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Introduction

Abs_tract: | | o | | | | _ | Applications:
A wide range of industrial applications from control engineering, systems engineering, computational engi- |
Model Order Reduction

neering or uncertainty quantification are addressed by mathematical system theory, including reduced order ¢ :

modeling. For linear systems, an essential tool for these tasks are system Gramian matrices. Yet, linear or e Decentralized Control
linearized systems may not suffice to model and simulate dynamics of complex technical systems. So, for ° Optlrr.]gI.PIacemer.]t
nonlinear or parametric systems, the data-driven empirical system Gramian matrices generalize linear meth- o Sensitivity Analysis
ods, and the empirical Gramian framework - emgr - is an open-source software toolbox for their computation. o Structural Identifiability

Parameter Reduction

Combined State and Parameter Reduction
Nonlinearity Quantification

Uncertainty Quantification

System Characterization

Empirical System Gramians

Given a nonlinear (and parametric) input-output system, with vector field x(t) = f(t, x(t), u(t), 8) and output functional y(t) = g(t, x(t), u(t), 0):

Reachability — Input-To-State Observability — State-To-Output

Perturb m-th component of training input u,
compute associated state trajectory x<™
and form average Gramian matrix:
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— Empirical Reachability Gramian 10710

Perturb n-th component of training initial state xo,

compute associated output trajectory y‘”,

and form average Gramian matrix:
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— Empirical Observability Gramian

Reducibility of nonlinear RC cascade by dominant subspaces.
Minimality — Input-To-Output
Perturb m-th component of training input u and compute associated state trajectory x*™
perturb n-th component of training initial state xo and compute output trajectory y*”,
and form average cross-correlation matrix:
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— Empirical Cross Gramian

Sensitivity — Parameter Reachability Identifiability — Parameter Observability

Treat /-th component of parameter 6 as extra input, Treat parameter 6 as (constant) extra states, compute

compute empirical reachability Gramian Wg(6)), augmented empirical observability Gramian (WO WM),

Wl W,

and form diagonal matrix from traces: and form Schur complement:

Wi := tr(Wg(6))) | W := Wy — WL W, Wy,

— Empirical Sensitivity Gramian _ Empirical Identifiability Gramian
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|dentifiability of nonlinear RC cascade resistors.

Combined State Minimality and Parameter Observability
Treat parameter 6 as (constant) extra states,
compute augmented empirical cross Gramian (Wx Wu),
and form Schur complement of symmetric part:

1
Wy = — Wi W + W)™ W

— Empirical Cross-ldentifiability Gramian
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