
algorithms

Article

emgr—The Empirical Gramian Framework

Christian Himpe ID

Computational Methods in Systems and Control Theory Group at the Max Planck Institute for Dynamics of
Complex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg, Germany; himpe@mpi-magdeburg.mpg.de

Received: 28 May 2018; Accepted: 24 June 2018; Published: 26 June 2018
����������
�������

Abstract: System Gramian matrices are a well-known encoding for properties of input-output
systems such as controllability, observability or minimality. These so-called system Gramians were
developed in linear system theory for applications such as model order reduction of control systems.
Empirical Gramians are an extension to the system Gramians for parametric and nonlinear systems
as well as a data-driven method of computation. The empirical Gramian framework - emgr -
implements the empirical Gramians in a uniform and configurable manner, with applications such as
Gramian-based (nonlinear) model reduction, decentralized control, sensitivity analysis, parameter
identification and combined state and parameter reduction.

Keywords: model reduction; model order reduction; decentralized control; sensitivity analysis;
parameter identification; empirical gramians; nonlinear systems; reduced order systems;
controllability; observability

PACS: 02.30.Yy

MSC: 93A15; 93B20; 93C10

Code Meta Data

name (shortname) EMpirical GRamian Framework (emgr)
version (release-date) 5.4 (2018-05-05)

identifier (type) doi:10.5281/zenodo.1241532 (doi)
authors (ORCIDs) Christian Himpe (0000-0003-2194-6754)

topic (type) Model Reduction (toolbox)
license (type) 2-Clause BSD (open)

repository (type) git:github.com/gramian/emgr (git)
languages Matlab

dependencies OCTAVE >= 4.2, MATLAB >= 2016b
systems Linux, Windows
website http://gramian.de

keywords empirical-gramians, cross-gramian, combined-reduction

1. Introduction

Attributes of input-output systems, such as controllability, observability or minimality can be
assessed by special matrices. These so-called system Gramian matrices, or short system Gramians
(Also: Grammian or Gram matrix.), have manifold applications in system theory, control theory and
mathematical engineering.

Algorithms 2018, 11, 91; doi:10.3390/a11070091 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-2194-6754
http://www.mdpi.com/1999-4893/11/7/91?type=check_update&version=1
http://doi.org/10.5281/zenodo.1241532
http://github.com/gramian/emgr
http://gramian.de
http://dx.doi.org/10.3390/a11070091
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 91 2 of 27

Originally, Gramian-based methods were developed for linear systems [1]. The empirical
Gramian matrices [2] are an extension of Gramian-based methods to nonlinear and parametric
systems. This work summarizes the empirical Gramian framework (emgr) [3], a compact software
toolbox, which implements various types of empirical Gramians as well as the related empirical
covariance matrices.

An important use of empirical Gramian matrices is model order reduction (MOR), utilizing the
capability of system Gramians to quantify the input-output importance of the underlying system’s
states based on controllability and observability. Several variants of Gramian-based model reduction
are available, for example:

• Linear Model Order Reduction [4],
• Robust Model Reduction [5],
• Parametric Model Order Reduction (pMOR) [6],
• Nonlinear Model Order Reduction (nMOR) [2,7–9],
• Second-Order System Model Reduction [10],
• Combined State and Parameter Reduction [11].

Beyond model reduction, (empirical) system Gramians can also be utilized for tasks like:

• Sensitivity Analysis [12,13],
• Parameter Identification [14,15],
• Decentralized Control [16–18],
• Optimal Sensor Placement [19,20], Optimal Actuator Placement [21],
• Optimal Control [22], Model Predictive Control [23],
• Nonlinearity Quantification [24,25].

In addition, various system invariants and indices are computable using system Gramians, and thus
also by empirical Gramians:

• System gain [12],
• Cauchy index [26,27],
• Information entropy index [28],
• Nyquist plot enclosed area [29],
• System Frobenius norm and ellipsoid volume [30],
• System H2-norm [31].

This wide range of applications and the compatibility to nonlinear systems make empirical
Gramians a versatile tool in many system-theoretic computations. Furthermore, the empirical
Gramians provide a data-driven method of computation with close relations to proper orthogonal
decomposition (POD) and balanced POD (bPOD) [32,33].

Various (Matlab) implementations are available for the computation of linear system Gramians by
the solution of associated matrix equations, such as the basic sylvester command, the gram, lyap and
covar commands from the MATLAB Control Toolbox (http://mathworks.com/products/control) and
OCTAVE Control Package (http://octave.sourceforge.net/control). For empirical Gramians, the only
other generic implementation, to the author’s best knowledge, is [34], which provides only the
empirical controllability Gramian and the empirical observability Gramian, but not any empirical cross
Gramian (see Sections 3.1.3 and 3.1.4). This makes emgr the unique (open-source) implementation of
all three: the empirical controllability Gramian WC, the empirical observability Gramian WO and the
empirical cross Gramian WX (sometimes also symbolized by WCO and XCG).

Lastly, it is noted that the term empirical Gramian is used as an umbrella term for the original
empirical Gramians [2], the empirical covariance matrices [35], modified empirical Gramians [36] or
local Gramians [37].

http://mathworks.com/products/control
http://octave.sourceforge.net/control

Algorithms 2018, 11, 91 3 of 27

1.1. Aim

After its initial version 1.0 (2013) release, accompanied by [38], the empirical Gramian framework
(emgr is also listed in the Oberwolfach References on Mathematical Software (ORMS), no. 345:
http://orms.mfo.de/project?id=345.) has been significantly enhanced. Apart from extended
functionality and accelerated performance, various new concepts and features were implemented.
Now, with the release of version 5.4 (2018) [3], this is a follow-up work illustrating the current state of
emgr and its applicability, as well as documenting the flexibility of this toolbox. In short, the major
changes involve:

• Non-symmetric cross Gramian variant,
• linear cross Gramian variant,
• distributed cross Gramian variant and interface,
• inner product kernel interface,
• time-integrator interface,
• time-varying system compatibility,
• tensor-based trajectory storage,
• functional paradigm software design.

1.2. Outline

This work is structured as follows: In Section 2 the empirical Gramian’s main application,
projection-based model order reduction, is briefly described; followed by Section 3, presenting the
mathematical definitions of the computable empirical Gramians. Section 4 summarizes the design
decision for emgr, while Section 5 documents usage and configuration. Numerical examples are
demonstrated in Section 6 and lastly, in Section 7, a short concluding remark is given.

2. Mathematical Preliminaries

The mathematical objects of interest are nonlinear parametric input-output systems, which
frequently occur in physical, chemical, biological and technical models or spatially discretized partial
differential equations (PDE). These control system models consist of a dynamical system (typically on
R, i.e., an ordinary differential equation (ODE)) as well as an output function, and maps the input
u : R>0 → RM via the state x : R>0 → RN to the output y : R>0 → RQ:

ẋ(t) = f (t, x(t), u(t), θ),

y(t) = g(t, x(t), u(t), θ).
(1)

The potentially nonlinear vector-field f : R>0×RN ×RM×RP → RN and output functional
g : R>0×RN ×RM×RP → RQ both depend on the time t ∈ R>0, the state x(t), input or control u(t)
and the parameters θ ∈ RP. Together with an initial condition x(0) = x0 ∈ RN , this setup constitutes
an initial value problem.

Model Reduction

The aim of model reduction is the algorithmic computation of surrogate reduced order models
with lower computational complexity or memory footprint than the original full order model.
For the sake of brevity, only combined state and parameter reduction is summarized here, which
includes state-space reduction, parametric state-space reduction and parameter-space reduction as
special cases; for an elaborate layout see [39].

http://orms.mfo.de/project?id=345

Algorithms 2018, 11, 91 4 of 27

Given the general, possibly nonlinear, input-output system (1), a combined state and parameter
reduced order model:

ẋr(t) = fr(t, xr(t), u(t), θr),

ỹ(t) = gr(t, xr(t), u(t), θr),

xr(0) = xr,0,

with a reduced state xr : R>0 → Rn, n � N, and a reduced parameter θr ∈ Rp, p � P, is sought.
Accordingly, a reduced vector-field fr : R>0×Rn×RM×Rp → Rn and a reduced output functional
gr : R>0×Rn×RM×Rp → RQ describe the reduced system, for which the reduced system’s outputs
ỹ : R>0 → RQ should exhibit a small error compared to the full order model, yet preserving the
parameter dependency:

‖y(θ)− ỹ(θr)‖ � 1.

A class of methods to obtain such a reduced order model with the associated requirements is
described next.

Projection-Based Combined Reduction

Projection-based combined state and parameter reduction is based on (bi-)orthogonal truncated
projections for the state- and parameter-space respectively. The state-space trajectory x(t), not too far
from a steady-state x̄ ∈ RN , ū ∈ RM, f (t, x̄, ū, θ) = 0 ∀t, is approximated affinely using truncated
reducing and reconstructing projections U1 ∈ RN×n and V1 ∈ RN×n, with Vᵀ

1 U1 = 1n:

xr(t) := Vᵀ
1 (x(t)− x̄)⇒ x(t) ≈ x̄ + U1xr(t).

The relevant parameter-space volume is also approximated by truncated reducing and
reconstructing projections Π1 ∈ RP×p and Λ1 ∈ RP×p, with Λᵀ

1 Π1 = 1p:

θr := Λᵀ
1 (θ − θ̄)⇒ θ ≈ θ̄ + Π1θr,

relative to a nominal parameter θ̄. Given these truncated projections, a projection-based reduced order
model is then obtained by:

ẋr(t) = Vᵀ
1 f (t, x̄ + U1xr(t), u(t), θ̄ + Π1θr),

ỹ(t) = g(t, x̄ + U1xr(t), u(t), θ̄ + Π1θr),

xr(0) = Vᵀ
1 (x0 − x̄),

θr = Λᵀ
1 (θ − θ̄).

(2)

Thus, to obtain a projection-based reduced order model with respect to the state- and
parameter-space, the overall task is determining the truncated projections U1, V1, Λ1 and Π1.

It should be noted that this approach produces globally reduced order models, meaning U1, V1,
Λ1, Π1 are valid over the whole operating region, which is an application-specific subspace of the
Cartesian product of the full order state- and parameter-space RN ×RP.

Gramian-Based Model Reduction

Gramian-based model reduction approximates the input-output behavior of a system by removing
the least controllable and observable state components. To this end, the system is transformed to
a representation in which controllability and observability are balanced. Given a controllability
Gramian WC (Section 3.1.1) and observability Gramian WO (Section 3.1.2) to an input-output system,

Algorithms 2018, 11, 91 5 of 27

a balancing transformation [4] is computable; here in the variant from [40], utilizing the singular value
decomposition (SVD):

WC
SVD
= UCDCUᵀ

C,

WO
SVD
= UODOUᵀ

O

→ UCD
1
2
CUᵀ

CUOD
1
2
OUᵀ

O = W
1
2

C W
1
2

O
SVD
= UDVᵀ.

Partitioning the columns of U and V based on the Hankel singular values (HSV) in D,
Dii = σi > σi+1, which indicate the balanced state’s relevance to the system’s input-output behavior,
into U1 ∈ RN×n, V1 ∈ RN×n related to the large HSV and U2 ∈ RN×N−n, V2 ∈ RN×N−n associated to
the small HSV,

U =
(

U1 U2

)
,

V =
(

V1 V2

)
,

then discarding the partitions associated to small singular values σn+1 � σn, corresponds to the
balanced truncation method [4,41].

A cross Gramian WX (Section 3.1.4) encodes both controllability and observability in a single
linear operator. For a symmetric system, a balancing transformation can then be obtained from an
eigenvalue decomposition (EVD) of the cross Gramian [42,43]:

WX
EVD
= UDVᵀ.

Alternatively, an approximate balancing transformation is obtained from an SVD of the cross
Gramian [11,44]:

WX
SVD
= UDVᵀ.

The truncated projections, U1 and V1, are obtained in the same way as for balanced truncation.
Using only the left or only the right singular vectors of WX for the (truncated) projections of
the state-space, and their transpose as reverse transformation, results in orthogonal (Galerkin)
projections [45]. This approach is called direct truncation method [11,27], i.e., V := Uᵀ.

Similarly, the parameter projection can be based on associated covariance matrices.
A transformation aligning the parameters along their principal axes, resulting from an SVD of such a
parameter covariance matrix ω [11,46,47]:

ω
SVD
= Π∆Λ,

yields truncatable projections given by the singular vectors, with partitioning of Π and Λ based on the
singular values in ∆.

3. Empirical Gramians

Classically, the controllability, observability and cross Gramians are computed for linear
systems by solving (linear) matrix equations. The empirical Gramians are a data-driven extension to
the classic system Gramians, and do not depend on the linear system structure. Computing system
Gramians empirically by trajectory simulations was already motivated in [4], but systematically
introduced in [2]. The central idea behind the empirical Gramians is the averaging over local Gramians
for any varying quantity, such as inputs, initial states, parameters or time-dependent components

Algorithms 2018, 11, 91 6 of 27

around an operating point [48]. This approach is closely related to the concept of local controllability
and local observability for nonlinear systems [49].

In the following, first the empirical Gramians for state-space system input-output coherence are
summarized, then the empirical Gramians for parameter-space identifiability and combined state and
parameter evaluation are described.

3.1. State-Space Empirical Gramians

Gramian-based controllability and observability analysis originates in linear system theory [50],
which investigates linear (time-invariant) systems,

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t).
(3)

An obvious approach for nonlinear systems is a linearization at a steady-state [51], but this may
obfuscate the original transient dynamics [52,53]. Alternatively, the nonlinear balancing for control
affine systems from [54], based on controllability and observability energy functions, could be used.
Yet practically, the associated nonlinear system Gramians require solutions to a Hamilton-Jacobi partial
differential equation (nonlinear controllability Gramian) and a nonlinear Lyapunov equation (nonlinear
observability Gramian) or a nonlinear Sylvester equation (nonlinear cross Gramian), which is currently
not feasible for large-scale systems. A compromise between linearized and nonlinear Gramians are
empirical Gramians [2,7].

Empirical Gramians are computed by systematically averaging system Gramians obtained from
numerical simulations over locations in an operating region near a steady-state. An operating
region is defined in this context by sets of perturbations for inputs/controls and the steady-state.
Originally in [2], these perturbation sets are constructed by the Cartesian product of sets of directions
(standard unit vectors), rotations (orthogonal matrices) and scales (positive scalars) for the input and
steady-state respectively. In the empirical Gramian framework, the rotations are limited to the set of
the unit matrix and negative unit matrix, as suggested in [2]. This constraint on the rotation entails
many numerical simplifications and reduces the perturbation sets to directions (standard unit vectors)
and scales (non-zero scalars):

Eu = {em ∈ RM : m = 1 . . . M, em
i = δim},

Su = {ck ∈ R : k = 1 . . . K, ck 6= 0},

Ex = {εj ∈ RN : j = 1 . . . N, ε
j
i = δij},

Sx = {dl ∈ R : l = 1 . . . L, dl 6= 0}.

Yet, only single input and state components can be perturbed at a time in this manner, which is
often practically sufficient.

The original empirical Gramians use a centering of the trajectories around the temporal average
and solely use impulse input type controls u(t) = δ(t) [2]. The related empirical covariance matrices
center the trajectories around a steady-state and allow arbitrary step functions u(t) = ∑k vkχ[tk ,tk+1)

(t),
vk ∈ R, tk ∈ R≥0, tk+1 > tk [35,55]. The empirical Gramian framework allows to compute either as
well as further centering variants (Section 5.4). In the following, empirical Gramians and empirical
covariance matrices will be jointly referred to by the term “empirical Gramian”.

Algorithms 2018, 11, 91 7 of 27

3.1.1. Empirical Controllability Gramian

The (linear) controllability (The term controllability is used instead of reachability as in [2,4,56].)
Gramian quantifies how well the state of an underlying linear system is driven by the input and is
defined as:

WC :=
∫ ∞

0
eAt BBᵀ eAᵀt dt =

∫ ∞

0
(eAt B)(eAt B)ᵀ dt.

The empirical variant is given by the following definition based on [2,35].

Definition 1 (Empirical Controllability Gramian). Given non-empty sets Eu and Su, the empirical
controllability Gramian ŴC ∈ RN×N is defined as:

ŴC =
1
|Su|

|Su |

∑
k=1

M

∑
m=1

1
c2

k

∫ T

0
Ψkm(t)dt,

Ψkm(t) = (xkm(t)− x̄km)(xkm(t)− x̄km)ᵀ ∈ RN×N ,

with the state trajectories xkm(t) for the input configurations ûkm(t) = ckem ◦ u(t) + ū, and the offsets ū, x̄km.

For an asymptotically stable linear system, delta impulse input ui(t) = δ(t) and an arithmetic
average over time as offset x̄ = 1

T
∫ T

0 x(t)dt, the empirical controllability Gramian is equal to the
controllability Gramian ŴC = WC [2]. The numerical computation of this empirical Gramian requires
(|Su| ·M) trajectories and is related to POD.

3.1.2. Empirical Observability Gramian

The (linear) observability Gramian quantifies how well a change in the state of an underlying
linear system is visible in the outputs and is defined as:

WO :=
∫ ∞

0
eAᵀt CᵀC eAt dt =

∫ ∞

0
(eAᵀt Cᵀ)(eAᵀt Cᵀ)ᵀ dt.

The empirical variant is given by the following definition based on [2,35].

Definition 2 (Empirical Observability Gramian). Given non-empty sets Ex and Sx, the empirical
observability Gramian ŴO ∈ RN×N is defined as:

ŴO =
1
|Sx|

|Sx |

∑
l=1

1
d2

l

∫ ∞

0
Ψl(t)dt,

Ψl
ij(t) = (yli(t)− ȳli)ᵀ(yl j(t)− ȳl j) ∈ R,

with the output trajectories yli(t) for the initial state configurations xli
0 = dlε

i + x̄, u(t) = ū, and the offsets ū, x̄, ȳli.

For an asymptotically stable linear system, no input and an arithmetic average over time as
offset ȳ = 1

T
∫ T

0 y(t)dt, the empirical observability Gramian is equal to the observability Gramian
ŴO = WO [2]. The numerical computation of this empirical Gramians requires (|Sx| · N) trajectories.

Algorithms 2018, 11, 91 8 of 27

3.1.3. Empirical Linear Cross Gramian

The (linear) cross Gramian [56,57] quantifies the controllability and observability, and thus
minimality, of an underlying square, M := dim(u(t)) = dim(y(t)) =: Q, linear system and is
defined as:

WX :=
∫ ∞

0
eAt BC eAt dt =

∫ ∞

0
(eAt B)(eAᵀt Cᵀ)ᵀ dt.

Augmenting the linear system’s dynamical system component with its transposed
system (The transposed system is equivalent to the negative adjoint system), induces
an associated controllability Gramian of which the upper right block corresponds to the
cross Gramian [58,59]:(

ẋ(t)
ż(t)

)
=

(
A 0
0 Aᵀ

)(
x(t)
z(t)

)
+

(
B

Cᵀ

)
u(t)⇒WC =

(
WC WX
Wᵀ

X WO

)
. (4)

The empirical variant restricted to the upper right block of this augmented controllability
Gramian (4) is given by the following definition based on [60].

Definition 3 (Empirical Linear Cross Gramian). Given non-empty sets Eu and Su, the empirical linear
cross Gramian ŴY ∈ RN×N is defined as:

ŴY =
1
|Su|

|Su |

∑
k=1

M

∑
m=1

1
c2

k

∫ T

0
Ψkm(t)dt,

Ψkm(t) = (xkm(t)− x̄km)(zkm(t)− z̄km)ᵀ ∈ RN×N ,

with the state trajectories xkm(t) and adjoint state trajectories zkm(t) for the input configurations
ûkm(t) = ckem ◦ u(t) + ū, and the offsets ū, x̄km, z̄km.

For an asymptotically stable linear system, delta impulse input ui(t) = δ(t) and an arithmetic
average over time as offset x̄ = 1

T
∫ T

0 x(t)dt, z̄ = 1
T
∫ T

0 z(t)dt, the empirical linear cross Gramian is
equal to the cross Gramian due to the result of the empirical controllability Gramian. The numerical
computation of this empirical Gramian requires (2 · |Su| ·M) trajectories and is related to balanced
POD [61].

3.1.4. Empirical Cross Gramian

Analytically, a cross Gramian for (control-affine) nonlinear gradient systems was developed
in [62,63], yet the computation of this nonlinear cross Gramian (This is also called cross operator or
cross map in this context) is infeasible for large systems. For (nonlinear) Single-Input-Single-Output
(SISO) systems, the empirical variant of the cross Gramian is developed in [12], for (nonlinear)
Multiple-Input-Multiple-Output (MIMO) systems in [11].

Definition 4 (Empirical Cross Gramian). Given non-empty sets Eu, Ex, Su and Sx, the empirical cross
Gramian ŴX ∈ RN×N is defined as:

ŴX =
1

|Su||Sx|M

|Su |

∑
k=1

|Sx |

∑
l=1

M

∑
m=1

1
ckdl

∫ ∞

0
Ψklm(t)dt,

Ψklm
ij = (xkm

i (t)− x̄km
i)(yl j

m(t)− ȳl j
m) ∈ R,

with the state trajectories xkm(t) for the input configurations ûkm(t) = ckem ◦ u(t) + ū, the output trajectories
yl j(t) for the initial state configurations xl j

0 = dlε
j + x̄, and the offsets ū, x̄km, x̄, ȳl j.

Algorithms 2018, 11, 91 9 of 27

For an asymptotically stable linear system, delta impulse input ui(t) = δ(t) and an arithmetic
averages over time as offsets x̄ = 1

T
∫ T

0 x(t)dt, ȳ = 1
T
∫ T

0 y(t)dt, the empirical cross Gramian is equal to
the cross Gramian ŴX = WX [11,12]. The numerical computation of this empirical Gramian requires
(|Sx| · (N + |Su| ·M)) trajectories.

3.1.5. Empirical Non-Symmetric Cross Gramians

The (empirical) cross Gramian is only computable for square systems, and verifiably useful for
symmetric or gradient systems [11,44,57]. In [39] an extension to the classic cross Gramian is proposed.
Based on results from decentralized control [16], a non-symmetric cross Gramian is computable
for non-square systems and thus non-symmetric systems. Given a partitioning of B = [b1, . . . , bM],
bi ∈ RM×1 and C = [c1, . . . , cQ]

ᵀ, cj ∈ R1×Q from the linear system (3), the (linear) non-symmetric
cross Gramian is defined as:

WZ :=
M

∑
i=1

Q

∑
j=1

∫ ∞

0
eAt bicj eAt dt =

∫ ∞

0
eAt

(M

∑
i=1

bi

)(Q

∑
j=1

cj

)
eAt dt.

For this cross Gramian to the associated “average” SISO system, an empirical variant is then
given by:

Definition 5 (Empirical Non-Symmetric Cross Gramian). Given non-empty sets Eu, Ex, Su and Sx, the
empirical non-symmetric cross Gramian ŴZ ∈ RN×N is defined as:

ŴZ =
1

|Su||Sx|M

|Su |

∑
k=1

|Sx |

∑
l=1

M

∑
m=1

Q

∑
q=1

1
ckdl

∫ ∞

0
Ψklmq(t)dt,

Ψklmq
ij = (xkm

i (t)− x̄km
i)(yl j

q (t)− ȳl j
q) ∈ R,

with the state trajectories xkm(t) for the input configurations ûkm(t) = ckem ◦ u(t) + ū, the output trajectories
yl j(t) for the initial state configurations xl j

0 = dlε
j + x̄, and the offsets ū, x̄km, x̄, ȳl j.

Corollary 1. For an asymptotically stable linear system, delta impulse input ui(t) = δ(t) and
arithmetic averages over time as offsets x̄ = 1

T
∫ T

0 x(t)dt, ȳ = 1
T
∫ T

0 y(t)dt, the empirical non-symmetric cross
Gramian is equal to the cross Gramian ŴZ = WZ of the average SISO system.

Proof. This is a direct consequence of [11] (Lemma 3).

The numerical computation of the empirical non-symmetric cross Gramian requires
(|Sx| · (N + |Su| ·M)) trajectories; the same as for the empirical cross Gramian.

3.2. Parameter-Space Empirical Gramians

To transfer the idea of Gramian-based state-space reduction to parameter-space reduction,
the concepts of controllability and observability are extended to the parameter-space. This leads
to controllability-based parameter identification and observability-based parameter identification.
Note that the observability-based parameter identification (and parameter reduction) is related to the
active subspaces method [64].

3.2.1. Empirical Sensitivity Gramian

Controllability-based parameter identification can be realized using an approach from [46],
which treats the parameters as (additional) constant inputs. The controllability Gramian for a linear

Algorithms 2018, 11, 91 10 of 27

system with linear parametrization (constant source or load) can be decomposed additively based on
linear superposition:

ẋ(t) = Ax(t) + Bu(t) + Fθ = Ax(t) +
(

B F
)(u(t)

θ

)

⇒WC = WC(A, B) +
P

∑
i=1

WC,i(A, F∗i).

Similar to [12], the trace of the parameter-controllability Gramians WC,i embodies a measure of
(average) sensitivity, and holds approximately for systems with nonlinear parametrization [38].

Definition 6 (Empirical Sensitivity Gramian). The empirical sensitivity Gramian is given by a diagonal
matrix with entries corresponding to the traces of the parameter-controllability Gramians,

WS,ii := tr(WC,i).

The sum over all controllability Gramians can also be used for robust model reduction [5].
Similarly, treating the parameters as inputs, the cross Gramian’s trace can be utilized as a sensitivity
measure [13].

3.2.2. Empirical Identifiability Gramian

For an observability-based parameter identification, the parameters are interpreted as additional
states of the system [14,19]. This approach leads to the augmented system, in which the system’s
state x is appended by the parameter θ and, since the parameters are (assumed) constant over time,
the components of the vector-field associated to the parameter-states are zero:(

ẋ(t)
θ̇(t)

)
=

(
f (t, x(t), u(t), θ(t))

0

)
,

y(t) = g(t, x(t), u(t), θ(t)),(
x(0)
θ(0)

)
=

(
x0

θ

)
,

(5)

leaving the parameter-state’s initial value for testing parameter perturbations. The observability
Gramian to this augmented system, the augmented observability Gramian, has the block structure:

ŴO =

(
WO WM
Wᵀ

M WP

)
,

with the state-space observability Gramian WO, the parameter-space observability Gramian WI and
the mixed state and parameter block WM = Wᵀ

M. To isolate the parameter identifiability information,
the state-space block is eliminated.

Definition 7 (Empirical Identifiability Gramian). The empirical identifiability Gramian is given by the
Schur-complement of the empirical augmented observability Gramian for the lower right block:

WI = WP −Wᵀ
MW−1

O WM.

Algorithms 2018, 11, 91 11 of 27

Often, it is sufficient to approximate the empirical identifiability Gramian by the lower right
block of the augmented observability Gramian WP:

WI ≈WP.

Apart from the relation of the identifiability Gramian to the Fischer information matrix [19],
also the connection of the (parameter) observability Gramian to the (parameter) Hessian matrix [65] is
noted here.

3.2.3. Empirical Cross-Identifiability Gramian

If a system is square, the augmented system (5) remains square and for linear systems symmetry
is also preserved. Hence, a cross Gramian of the augmented system is computable [11].

Definition 8 (Empirical Joint Gramian). The empirical joint Gramian is given by the empirical cross
Gramian of the augmented system.

The joint Gramian is an augmented cross Gramian and has a similar block structure as the
augmented observability Gramian,

WJ =

(
WX Wm

0 0

)
,

but due to the uncontrollable parameter-states, the lower (parameter-related) blocks are identically
zero. Nonetheless, the observability-based parameter identifiability information can be extracted from
the mixed block Wm.

Definition 9 (Empirical Cross-Identifiability Gramian). The empirical cross-identifiability Gramian
is given by the Schur-complement of the symmetric part of the empirical joint Gramian for the lower right block:

WÏ = 0− 1
2

Wᵀ
m(WX + Wᵀ

X)
−1Wm.

Thus, the empirical joint Gramian enables the combined state and parameter analysis by the
empirical cross Gramian WX and empirical cross-identifiability Gramian WÏ from a single N × N + P
matrix. Note that the empirical joint Gramian may also be computed based on the non-symmetric
cross Gramian. Additionally, a parameter Gramian, such as WI or the WÏ , could be balanced with the
loadability Gramian from [15].

3.3. Notes on Empirical Gramians

It should be noted that empirical Gramians only yield workable results if the operating
region of the system is restricted to a single steady-state. If the trajectories used for the assembly of
empirical Gramians are periodic or do not attain this steady-state, their performance is similar to
time-limited balancing methods, see for example [66] and references therein. Overall, the quality of
empirical-gramian-based methods depend largely on the quality of the measured or simulated (output)
trajectory data. Yet, due to the data-driven nature of the empirical Gramians, even unstable systems or
systems with inhomogeneous initial conditions are admissible.

The dominant computational cost in the assembly of empirical Gramians is the computation of
trajectories. This is especially obvious from the observability-based empirical Gramians, which
appear to perturb every component of the steady or initial state. Yet in practice, the number of
trajectories can often be reduced based on knowledge about the underlying model or operating region.
Furthermore, the trajectories are computable in parallel.

Algorithms 2018, 11, 91 12 of 27

4. Implementation Details

This section states concisely the theoretical, practical and technical design decisions in the
implementation of the empirical Gramian framework–emgr [3], as well as describes the unified and
configurable approach to empirical Gramian computation.

4.1. Design Principles

emgr is realized using the high-level, interpreted Matlab programming language, which is chosen
due to its widespread use, long-term compatibility and mathematical expressiveness. This enables
first, a wide circulation due to compatibility with MATHWORKS MATLAB® [67], and second, the
usage of the open-source variant GNU OCTAVE [68]. Generally, the implementation of emgr follows
the procedural programming paradigm, includes various functional programming techniques and
avoids object-oriented programming.

Since empirical Gramians are computable by mere basic linear algebra operations, Matlab code
can be evaluated efficiently by vectorization, which transfers computationally intensive tasks as bulk
operations to the Basic Linear Algebra Subroutines (BLAS) back-end.

Overall, emgr is a reusable open-source toolbox, and encompasses less than 500 LoC
(Lines of Code) in a single file and a cyclomatic complexity of <100 of the main function. Apart from a
Matlab interpreter, emgr has no further dependencies, such as on other toolboxes. The source code is
engineered with regard to the best practice guides [69] (coding style) and [70] (performance).

Furthermore, two variants of emgr are maintained: First, emgr_oct (See
http://gramian.de/emgr_oct.m), uses OCTAVE-specific language extension: default arguments and
assignment operations, second, emgr_lgc (See http://gramian.de/emgr_lgc.m), enables compatibility
to MATLAB versions before 2016b not supporting implicit expansion, also known as automatic
broadcasting.

4.2. Parallelization

Apart from vectorization allowing the implicit use of single-instruction-multiple-data (SIMD)
functionality for vectorized block operations, also multi-core parallelization is used to maximize use of
available compute resources.

4.2.1. Shared Memory Parallelization

For shared memory systems with uniform memory access (UMA), two types of parallelization
are utilized. First, an implicit parallelization may be applied by the interpreter for an
additional acceleration of block operations. Second, explicit parallelization is available for
the computation of different state and output trajectories, using parallel for-loops parfor (See
http://mathworks.com/help/matlab/ref/parfor.html), but deactivated by default to guarantee
replicable results, as the use of parfor does not guarantee a unique order of execution.

4.2.2. Heterogeneous Parallelization

The actual empirical Gramians result from N2 inner products. In case of the default Euclidean
inner product, this amounts to a dense matrix-matrix-multiplication (Implemented as Generalized
Matrix Multiplication (GEMM) R = AB+ αC) by BLAS), which can be efficiently computed by General
Purpose Graphics Processing Units (GPGPUs). In the case of an integrated GPU with zero-copy shared
memory architecture, such as uniform memory model (UMM) or heterogeneous unified memory
access (hUMA) [71], is used, the assembly of the Gramian matrices can be performed with practically
no overhead, since the trajectories, which are usually computed and stored in CPU memory space,
do not need to be copied between CPU and GPU memory spaces. The GPU can directly operate on the
shared memory.

http://gramian.de/emgr_oct.m
http://gramian.de/emgr_lgc.m
http://mathworks.com/help/matlab/ref/parfor.html

Algorithms 2018, 11, 91 13 of 27

4.2.3. Distributed Memory Parallelization

A disadvantage of empirical Gramian matrices is the quadratically growing memory requirements
with respect to the state-space (and parameter-space) dimension, since for an N dimensional system,
a (dense) empirical Gramian of dimension N × N is computed. To combat this shortcoming, a specific
property of the empirical cross Gramian can be exploited: The columns of the empirical cross Gramian,
and thus the empirical joint Gramian, may be computed separately,

ŴX = [ŵ1
X , . . . , ŵN

X],

ŵj
X =

1
|Su||Sx|M

|Su |

∑
k=1

|Sx |

∑
l=1

M

∑
m=1

1
ckdl

∫ ∞

0
ψklmj(t)dt ∈ RN×1,

ψ
klmj
i = (xkm

i (t)− x̄km
i)(yl j

m(t)− ȳl j
m) ∈ R,

hence this distributed empirical cross Gramian [72] (Section 4.2) is computable in parallel
and communication-free on a distributed memory computer system, or sequentially in a
memory-economical manner as a low-rank empirical cross Gramian [73] on a unified memory
computer system. This column-wise computability translates also to the empirical joint Gramian
and the non-symmetric variants of the empirical cross and joint Gramian.

Based on this partitioning, a low-rank representation can be obtained in a memory-bound or
compute-bound setting together with the hierarchical approximate proper orthogonal decomposition
(HAPOD) [72]. This POD variant allows to directly compute a Galerkin projection from an arbitrary
column-wise partitioning of the empirical cross Gramian.

5. Interface

emgr provides a uniform function call for the computation of all empirical Gramian types.
The subsequent signature documentation is based on [47] and http://gramian.de (the current instance
(2018-06) of http://gramian.de is preserved at https://archive.li/p0cIO.) Minimally, the emgr function
requires five mandatory arguments (single letter):

emgr(f,g,s,t,w)

additionally eight optional arguments (double letter) allow a usage by:

emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm,dp)

furthermore, a single argument variant may also be used,

emgr('version')

which returns the current version number.

5.1. Mandatory Arguments

For the minimal usage, the following five arguments are required:

f handle to a function with the signature xdot = f(x,u,p,t) representing the system’s vector-field
and expecting the arguments: current state x, current input u, (current) parameter p and current
time t.

g handle to a function with the signature y = g(x,u,p,t) representing the system’s output
functional and expecting the arguments: current state x, current input u, (current) parameter p
and current time t.

If g = 1, the identity output functional g(t, x(t), u(t), θ) = x(t) is assumed.

http://gramian.de
http://gramian.de
https://archive.li/p0cIO

Algorithms 2018, 11, 91 14 of 27

s three component vector s = [M,N,Q] setting the dimensions of the input M := dim(u(t)),
state N := dim(x(t)) and output Q := dim(y(t)).

t two component vector t = [h,T] specifying the time-step width h and time horizon T.

w character selecting the empirical Gramian type; for details see Section 5.2.

5.2. Features

The admissible characters to select the empirical Gramian type are as follows:

'c' Empirical controllability Gramian (see Section 3.1.1),
emgr returns a matrix:

N × N empirical controllability Gramian matrix WC.

'o' Empirical observability Gramian (see Section 3.1.2),
emgr returns a matrix:

N × N empirical observability Gramian matrix WO.

'x' Empirical cross Gramian (see Section 3.1.4),
emgr returns a matrix:

N × N empirical cross Gramian matrix WX .

'y' Empirical linear cross Gramian (see Section 3.1.3),
emgr returns a matrix:

N × N empirical linear cross Gramian matrix WY.

's' Empirical sensitivity Gramian (see Section 3.2.1),
emgr returns a cell array. holding:

N × N empirical controllability Gramian matrix WC,
P× 1 empirical sensitivity Gramian diagonal WS.

'i' Empirical identifiability Gramian (see Section 3.2.2),
emgr returns a cell array holding:

N × N empirical observability Gramian matrix WO,
P× P empirical identifiability Gramian matrix WI .

'j' Empirical joint Gramian (see Section 3.2.3),
emgr returns a cell array holding:

N × N empirical cross Gramian matrix WX ,
P× P empirical cross-identifiability Gramian matrix WÏ .

A cell array is a generic container (array) in the Matlab language.

5.2.1. Non-Symmetric Cross Gramian

The non-symmetric cross Gramian [39] (see Section 3.1.5) is a special variant of the cross Gramian
for non-square and non-symmetric MIMO systems, which reduces to the regular cross Gramian for
SISO systems. Since the computation is similar to the empirical cross Gramian and a non-symmetric
variant of the empirical joint Gramian shall be computable too, instead of a Gramian type selected
through the argument w, it is selectable via an option flag: Non-symmetric variants may be computed
for the empirical cross Gramian (w = 'x'), empirical linear cross Gramian (w = 'y') or empirical joint
Gramian (w = 'j') by activating the flag nf(7) = 1.

Algorithms 2018, 11, 91 15 of 27

5.2.2. Parametric Systems

Parametric model order reduction is accomplished by averaging an empirical Gramian over a
discretized parameter-space [6]. To this end the parameter sampling points, arranged as columns of a
matrix, can be supplied via the optional argument pr.

5.2.3. Time-Varying Systems

Since empirical Gramians are purely based on trajectory data, they are also computable for time
varying systems as described in [74]. The empirical Gramian framework can compute averaged
Gramians for time varying systems [75], which are time independent matrices.

5.3. Optional Arguments

The eight optional arguments allow a detailed definition of the operating region and
configuration of the computation.

pr system parameters (Default value: 0)

vector a column vector holding the parameter components,
matrix a set of parameters, each column holding one parameter.

nf twelve component vector encoding the option flags, for details see Section 5.4.
ut input function (Default value: 1)

handle function handle expecting a signature u_t = u(t),
0 pseudo-random binary input,
1 delta impulse input,
∞ decreasing frequency exponential chirp.

us steady-state input (Default value: 0)

scalar set all M steady-state input components to argument,
vector set steady-state input to argument of expected dimension M× 1.

xs steady-state (Default value: 0)

scalar set all N steady-state components to argument,
vector set steady-state to argument of expected dimension N × 1.

um input scales (Default value: 1)

scalar set all M maximum input scales to argument,
vector set maximum input scales to argument of expected dimension M× 1,

matrix set scales to argument with M rows; used as is.

xm initial state scales (Default value: 1)

scalar set all N maximum initial state scales to argument,
vector set maximum steady-state scales to argument of expected dimension N × 1,

matrix set scales to argument with N rows; used as is.

dp inner product interface via a handle to a function with the signature z = dp(x,y) defining the
dot product for the Gramian matrix computation (Default value: []).

Inner Product Interface

The empirical Gramian matrices are computed by inner products of trajectory data. A custom
inner products for the assembly of the empirical Gramians matrix, can be set by the argument dp,
which expects a handle to a function with the signature:

z = dp(x,y)

Algorithms 2018, 11, 91 16 of 27

and the arguments:

x matrix of dimension N × T
h ,

y matrix of dimension T
h × n for n ≤ N.

The return value z is typically an N × n matrix, but scalar or vector-valued z are admissible, too.
By default, the Euclidean inner product, the standard matrix multiplication is used:

dp = @(x,y) mtimes(x,y).

Other choices are for example: covariance-weighted products for Gaussian-noise-driven systems
yielding system covariances [76], reproducing kernel Hilbert spaces (RKHS) [77], such as the
polynomial, Gaussian or Sigmoid kernels [78], or energy-stable inner products [79]. Also, weighted
Gramians [36] and time-weighted system Gramians [80] can be computed using this interface, i.e.,

dp = @(x,y) mtimes([0:h:T].ˆk.*x,y)

for a monomial of order k time-domain weighted inner product. Furthermore, the inner product
interface may be used to directly compute the trace of an empirical Gramian by using a pseudo-kernel:

dp = @(x,y) sum(sum(x.*y'))

which exploits a property for computing the trace of a matrix product
tr(AB) = ∑i ∑j AijBji. This interface may also be used to compute only the empirical
Gramian’s diagonal:

dp = @(x,y) sum(x.*y',2)

for input-output importance [81] or input-output coherence [57] (Ch. 13). Lastly, it is noted that
offloading matrix multiplications to an accelerator such as a GPGPU, motivated in Section 4.2.2,
can also be achieved using this interface.

5.4. Option Flags

The vector nf contains 12 components, each representing an option with the default value zero
and the following functionality:

nf(1) Time series centering:

= 0 No centering,
= 1 Steady-state (for empirical covariance matrices),
= 2 Final state,
= 3 Arithmetic average over time (for empirical Gramians),
= 4 Root-mean-square over time,
= 5 Mid-range over time.

nf(2) Input scale sequence:

= 0 Single scale: um ← um,
= 1 Linear scale subdivision: um ← um * [0.25, 0.5, 0.75, 1.0],
= 2 Geometric scale subdivision: um ← um * [0.125, 0.25, 0.5, 1.0],
= 3 Logarithmic scale subdivision: um ← um * [0.001, 0.01, 0.1, 1.0],
= 4 Sparse scale subdivision: um ← um * [0.01, 0.5, 0.99, 1.0].

Algorithms 2018, 11, 91 17 of 27

nf(3) Initial state scale sequence:
= 0 Single scale: xm ← xm,
= 1 Linear scale subdivision: xm ← xm * [0.25, 0.5, 0.75, 1.0],
= 2 Geometric scale subdivision: xm ← xm * [0.125, 0.25, 0.5, 1.0],
= 3 Logarithmic scale subdivision: xm ← xm * [0.001, 0.01, 0.1, 1.0],
= 4 Sparse scale subdivision: xm ← xm * [0.01, 0.5, 0.99, 1.0].

nf(4) Input directions:
= 0 Positive and negative: um ← [-um, um],
= 1 Only positive: um ← um.

nf(5) Initial state directions:
= 0 Positive and negative: xm ← [-xm, xm],
= 1 Only positive: xm ← xm.

nf(6) Normalizing:
= 0 No normalization,
= 1 Scale with Gramian diagonal (see [82]),
= 2 Scale with steady-state (see [34]).

nf(7) Non-Symmetric Cross Gramian, only WX , WY, WJ :
= 0 Regular cross Gramian,
= 1 Non-symmetric cross Gramian.

nf(8) Extra input for state and parameter perturbation trajectories, only WO, WX , WS, WI , WJ :
= 0 No extra input,
= 1 Apply extra input (see [83]).

nf(9) Center parameter scales, only WS, WI , WJ :
= 0 No centering,
= 1 Center around arithmetic mean,
= 2 Center around logarithmic mean.

nf(10) Parameter Gramian variant, only WS, WI , WJ :
= 0 Average input-to-state (WS), detailed Schur-complement (WI , WJ),
= 1 Average input-to-output (WS), approximate Schur-complement (WI , WJ).

nf(11) Empirical cross Gramian partition width, only WX , WJ :
= 0 Full cross Gramian computation, no partitioning.

< N Maximum partition size in terms of cross Gramian columns.

nf(12) Partitioned empirical cross Gramian running index, only WX , WJ :
= 0 No partitioning.
> 0 Index of the set of cross Gramian columns to be computed.

5.4.1. Schur-Complement

The observability-based parameter Gramians, the empirical identifiability Gramian WI and
the empirical cross-identifiability Gramian WÏ , utilize an inversion as part of a (approximated)
Schur-complement. Instead of using a Schur-complement solver or the pseudo-inverse, an approximate
inverse with computational complexity O(N2) based on [84] is utilized,

A−1 ≈ D−1 − D−1ED−1,

with the diagonal matrix D, Dii = Aii and the matrix of off-diagonal elements E = A − D.
This approximate inverse is used by default for WI and WÏ .

Algorithms 2018, 11, 91 18 of 27

5.4.2. Partitioned Computation

The partitioned empirical cross Gramian (Section 4.2.3) can be configured by the option flags
nf(11) and nf(12), with nf(11) defining the maximum number of columns per partition, and
nf(12) setting the running index of the current partition. Together with a partitioned singular value
decomposition, such as the HAPOD [72], an empirical-cross-Gramian-based Galerkin projection is
computable with minimal communication in parallel on a distributed memory system, or sequentially
on a shared memory system [73].

5.5. Solver Configuration

To provide a problem-specific integrator to generate the state and output trajectories, a global
variable named ODE is available, and expects a handle to a function with the signature:

y = ODE(f,g,t,x0,u,p)

comprising the arguments:

f handle to a function with the signature xdot = f(x,u,p,t) representing the system’s vector-field
and expecting the arguments: current state x, current input u, (current) parameter p and current
time t.

g handle to a function with the signature y = g(x,u,p,t) representing the system’s output
functional and expecting the arguments: the current state x, current input u, (current) parameter
p and current time t.

t two component vector t = [h,T] specifying the time-step width h and time horizon T.

x0 column vector of dimension N setting the initial condition.

u handle to a function with the signature u_t = u(t).

p column vector of dimension P holding the (current) parameter.

The solver is expected to return a discrete trajectory matrix of dimension
dim(g(x(t), u(t), θ, t))× T

h .
As a default solver for (nonlinear) initial value problems, the optimal second-order strong stability

preserving (SSP) explicit Runge-Kutta method [85] is included in emgr. This single-step integrator is
implemented in a low-storage variant, and the stability of this method can be increased by additional
stages, which is configurable by a global variable named STAGES. The default number of stages is
STAGES = 3, yielding the SSP32 method.

5.6. Sample Usage

To illustrate the usage of emgr, the Matlab code for the computation of the empirical cross
Gramian of a small linear system is presented in Figure 1. For demonstration purposes, this system
has one uncontrollable and unobservable, one controllable and unobservable, one uncontrollable and
observable, and one controllable and observable state:

A := −1
2
1, B :=

(
0 1 0 1

)ᵀ
, C :=

(
0 0 1 1

)
.

The cross Gramian computes as:

AWX + WX A = BC ⇒WX = BC,

which is approximately computed empirically following Section 3.1.4 in Figure 1.

Algorithms 2018, 11, 91 19 of 27

M = 1; % Number of inputs
N = 4; % Number of states
Q = 1; % Number of outputs
A = -0.5*eye(N); % System matrix
B = [0;1;0;1]; % Input matrix
C = [0,0,1,1]; % Output matrix
f = @(x,u,p,t) A*x + B*u; % Vector field
g = @(x,u,p,t) C*x; % Output functional
h = 0.1; % Time step size
T = 10.0; % Time horizon
Wx = emgr(f,g,[M,N,Q],[h,T],'x'); % ≈ B*C

Figure 1. Sample code for the computation of the empirical cross Gramian of a non-minimal fourth
order system, see Section 5.6.

6. Numerical Examples

In this section, empirical-Gramian-based model reduction techniques are demonstrated for three
test systems using [68]; first, for a linear state-space symmetric MIMO system, second, for a hyperbolic
SISO system, and third for a nonlinear SIMO system. All numerical tests are performed using
OCTAVE 4.4 [86].

6.1. Linear Verification

The first example is a linear test system of the form (3) and generated using the inverse Lyapunov
procedure [87], in a variant that enforces state-space symmetric systems [88]. For state-space symmetric
systems, A = Aᵀ, B = Cᵀ, all system Gramians are symmetric and equal [89]. The system is
configured to have N = dim(x(t)) = 256 states and dim(u(t)) = dim(y(t)) = 4 inputs and outputs.
For the computation of the reduced order model, the empirical linear cross Gramian with an impulse
input ui(t) = δ(t) and a zero initial state x0,i = 0 is used, while for the trajectory simulation the default
SSP32 (Section 5.5) integrator is utilized.

To quantify the quality of the resulting reduced order models, the error between the original full
order model output and the reduced order model’s output is compared in the time-domain L2-norm,

‖y− ỹ‖L2 =

√∫ ∞

0
‖y(t)− ỹ(t)‖2

2 dt.

In addition, the balanced truncation upper bound is assessed [41]:

‖y− ỹ‖L2 ≤ 2‖u‖L2

N

∑
k=n+1

σk,

for a reduced model of order n. Instead of impulse input, zero-centered, unit-variance Gaussian noise
is used as input time series for the evaluation.

Figure 2 shows the reduced order model’s relative L2-norm model reduction error, as well as the
upper bound for increasing reduced orders. The error evolves correctly tightly below the bound, until
the numerical accuracy (double-precision floating point arithmetic) is reached.

Algorithms 2018, 11, 91 20 of 27

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

50 100 150 200 250

R
e
la

ti
v
e
 E

rr
o
r

Reduced State-Space Dimension

L2 Error
H∞ Bound

Figure 2. Model reduction error for the linear test system, see Section 6.1.

6.2. Hyperbolic Evaluation

The second numerical example is given by a one-dimensional transport equation. An input-output
system is constructed by selecting the left boundary as the input and the right boundary as the output:

∂

∂t
z(x, t) = −θ

∂

∂x
, x ∈ [0, 1],

z(0, t) = u(t),

z(x, 0) = 0,

y(t) = z(1, t),

while the transport velocity θ ∈ [1.0, 1.5] is treated as a parameter. This partial differential equation
system is spatially discretized by a first-order finite-difference upwind scheme, yielding a SISO
ordinary differential equation system:

ẋ(t) = A(θ)x(t) + bu(t),

y(t) = cx(t),

with A(θ) = θA. For this example, a spatial resolution of dim(x(t)) = 256 is chosen, hence
A ∈ R256×256, b ∈ R256 and c ∈ R256. Since the system matrix is non-normal, using techniques
such as POD may lead to unstable reduced order models. Thus, here a cross-Gramian-based balancing
technique is used, guaranteeing stability of the reduced model. For training, impulse responses for
the extremal velocities are used; for testing, a Gauss bell input is utilized over 10 uniformly random
velocities, both utilizing the default integrator. The reduced order model quality is evaluated by the
parametric norm [47]:

‖y(θ)− ỹ(θ)‖L2 ⊗L2 =

√∫
Θ
‖y(θ)− ỹ(θr)‖2

L2
dθ.

Algorithms 2018, 11, 91 21 of 27

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

50 100 150 200 250

R
e
la

ti
v
e
 E

rr
o
r

Reduced State-Space Dimension

L2 Error

Figure 3. Model reduction error for the hyperbolic test system, see Section 6.2.

Even though the system is hyperbolic, a steep decay in error is obtained (Figure 3). Yet, due to the
hyperbolicity and the parameter-dependence of the reduced order model, a lower overall numerical
accuracy (≈10−7) is achieved.

6.3. Nonlinear Validation

The third example involves a parametric nonlinear system, based on the hyperbolic network
model [90],

ẋ(t) = A tanh(K(θ)x(t)) + Bu(t),

y(t) = Cx(t).

The structure of this system is similar to the linear system model (3), yet the vector-field
includes a hyperbolic tangent nonlinearity, in which the parametrized activation is described by
a diagonal gain matrix K(θ), Kii = θi. A negative Lehmer matrix (a Lehmer matrix is defined
as Aij := min(i, j)/ max(i, j), and is positive definite) is selected as system matrix A ∈ R256×256,
a vector of sequential cosine evaluations as input matrix B ∈ R256×1, a binary matrix C4×256 as output
matrix, and parameters θ ∈ R256 constrained to the interval θi ∈ [1

2 , 1]. For this system a combined state
and parameter reduction is demonstrated. To this end an empirical non-symmetric joint Gramian is
computed, using again an impulse input ui(t) = δ(t), a zero initial state x0,i = 0 and the default
integrator. The reduced order model quality is evaluated for the same input and initial state by the
joint state and parameter norm ‖y(θ)− ỹ(θr)‖L2 ⊗L2 , with respect to the reduced parameters for ten
uniformly random samples from the admissible parameter-space.

Figure 4 depicts theL2⊗L2-norm model reduction error for increasing state- and parameter-space
dimensions. The combined reduction errors decay for both: The reduced state-space and reduced
parameter-space, yet faster for the state-space. As for the parametric model, the numerical accuracy is
reduced due to the combined reduction.

Algorithms 2018, 11, 91 22 of 27

Figure 4. Model reduction error for the nonlinear test system, see Section 6.3.

6.4. On Hyper-Reduction

Projection-based model reduction for nonlinear systems (such as in Section 6.3) leads to a
computational issue, the so-called lifting bottleneck, which results from the composition of the
reconstructing projection U1 with the original, (nonlinear) vector field f and the reducing projection V1:

fr := Vᵀ
1 ◦ f ◦U1,

in the reduced vector field (2). This means for nonlinear systems, the high-dimensional state has to be
used in the reduced order model, as opposed to linear systems (3), where the truncated projections
can be applied directly to the linear vector field components (The composition operators become
matrix-matrix multiplications in the linear case) beforehand.

To reduce this computational complexity, hyper-reduction methods are utilized. Examples of
hyper-reduction methods are: Gappy-POD [91], Missing Point Estimation (MPE) [92], Discrete
Empirical Interpolation Method (DEIM) [93], Dynamic Mode Decomposition (DMD) [94] or
numerical linearization [95]; for a comparison see [96]. These methods construct (linear) reduced
representations of the nonlinearity in a data-driven manner.

emgr does not address hyper-reduction and thus it has to be applied in a separate post-processing
step [97]. Yet, the trajectory data used to assemble the empirical Gramians can be recycled by
interposing the hyper-reduction computation via the solver configuration (Section 5.5).

7. Concluding Remark

Empirical Gramians are a universal tool for nonlinear system and control theoretic applications
with a simple, data-driven construction. The empirical Gramian framework - emgr - implements
empirical Gramian computation for system input-output coherence and parameter identifiability
evaluation. Possible future extensions of emgr may include Koopman Gramians [98], empirical Riccati
covariance matrices [99], or empirical differential balancing [100]. Finally, further examples and
applications can be found at the emgr project website: http://gramian.de.

Code Availability

The source code of the presented numerical examples can be obtained from:

http://runmycode.org/companion/view/2077

and is authored by: CHRISTIAN HIMPE.

http://gramian.de
http://runmycode.org/companion/view/2077

Algorithms 2018, 11, 91 23 of 27

Funding: Supported by the German Federal Ministry for Economic Affairs and Energy, in the joint project:
“MathEnergy—Mathematical Key Technologies for Evolving Energy Grids”, sub-project: Model Order Reduction
(Grant number: 0324019B). Open access funding provided by Max Planck Society.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PDE Partial Differential Equation
ODE Ordinary Differential Equation
MOR Model Order Reduction
pMOR parametric Model Order Reduction
nMOR nonlinear Model Order Reduction
POD Proper Orthogonal Decomposition
bPOD balanced Proper Orthogonal Decomposition
SVD Singular Value Decomposition
HSV Hankel Singular Values
EVD Eigenvalue Decomposition
SISO Single-Input-Single-Output
MIMO Multiple-Input-Multiple-Output
BLAS Basic Linear Algebra System
LoC Lines of Code
SIMD Single Instruction Multiple Data
UMA Unified Memory Access
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
UMM Unified Memory Model
hUMA heterogeneous Unified Memory Access
CPU Central Processing Unit
GEMM GEneralized Matrix Multiplication
HAPOD Hierarchical Approximate Proper Orthgoonal Decomposition
RKHS Reproducing Kernel Hilbert Spaces
SSP Strong Stability Preserving
SIMO Single-Input-Multiple-Output
MPE Missing Point Estimation
DEIM Discrete Empirical Interpolation Method
DMD Dynamic Mode Decomposition

References

1. Kalman, R.E. Mathematical description of linear dynamical systems. SIAM J. Control Optim. 1963, 1, 182–192.
[CrossRef]

2. Lall, S.; Marsden, J.E.; Glavaški, S. Empirical model reduction of controlled nonlinear systems. IFAC Proc.
Vol. 1999, 32, 2598–2603. [CrossRef]

3. Himpe, C. emgr—EMpirical GRamian Framework (Version 5.4). Available online: http://gramian.de
(accessed on 26 June 2018).

4. Moore, B.C. Principal component analysis in linear systems: Controllability, observability, and model
reduction. IEEE Trans. Autom. Control 1981, 26, 17–32. [CrossRef]

5. Sun, C.; Hahn, J. Model reduction in the presence of uncertainty in model parameters. J. Process Control
2006, 16, 645–649. [CrossRef]

6. Himpe, C.; Ohlberger, M. The Empirical Cross Gramian for Parametrized Nonlinear Systems.
IFAC-PapersOnLine 2015, 48, 727–728. [CrossRef]

7. Hahn, J.; Edgar, T.F. Reduction of nonlinear models using balancing of empirical Gramians and Galerkin
projections. In Proceedings of the 2000 American Control Conference, Chicago, IL, USA, 28–30 June 2000;
Volume 4, pp. 2864–2868.

http://dx.doi.org/10.1137/0301010
http://dx.doi.org/10.1016/S1474-6670(17)56442-3
http://gramian.de
http://dx.doi.org/10.1109/TAC.1981.1102568
http://dx.doi.org/10.1016/j.jprocont.2005.10.001
http://dx.doi.org/10.1016/j.ifacol.2015.05.163

Algorithms 2018, 11, 91 24 of 27

8. Condon, M.; Ivanov, R. Model reduction of nonlinear systems. Compel-Int. J. Comp. Math. Electr. Electron.
Eng. 2004, 23, 547–557. [CrossRef]

9. Yao, S.; Deng, Y.; Yu, Z. Balanced Truncation on Empirical Gramians for Model-Order-Reduction of
Non-Quasi-Static Effects in MOSFETs. In Proceedings of the 9th International Conference on Solid-State and
Integrated-Circuit Technology, Beijing, China, 20–23 October 2008; pp. 309–312.

10. Zhanfeng, M.; Chao, H. Structure-preserving balanced truncation for flexible spacecraft using cross Gramian.
J. Beijing Univ. Aeronaut. Astronaut. 2008, 34, 1437–1440.

11. Himpe, C.; Ohlberger, M. Cross-Gramian Based Combined State and Parameter Reduction for Large-Scale
Control Systems. Math. Probl. Eng. 2014, 2014, 1–13. [CrossRef]

12. Streif, S.; Findeisen, R.; Bullinger, E. Relating Cross Gramians and Sensitivity Analysis in Systems Biology.
Theory Netw. Syst. 2006, 10, 437–442.

13. Lystianingrum, V.; Hredzak, B.; Agelidis, V.G. Abnormal overheating detectability analysis based on cross
Gramian for a supercapacitors string. In Proceedings of the Power and Energy Society General Meeting,
Boston, MA, USA, 17–21 July 2016.

14. Geffen, D.; Findeisen, R.; Schliemann, M.; Allgöwer, F.; Guay, M. Observability Based Parameter
Identifiability for Biochemical Reaction Networks. In Proceedings of the 2008 American Control Conference,
Seattle, WA, USA, 11–13 June 2008; pp. 2130–2135.

15. Tolks, C.; Ament, C. Model Order Reduction of Glucose-Insulin Homeostasis Using Empirical Gramians
and Balanced Truncation. IFAC-PapersOnline 2017, 50, 14735–14740. [CrossRef]

16. Moaveni, B.; Khaki-Sedigh, A. Input-Output Pairing based on Cross-Gramian Matrix. In Proceedings of the
International Joint Conference SICE-ICAS, Busan, Korea, 18–21 October 2006; pp. 2378–2380.

17. Shaker, H.R.; Komareji, M. Control Configuration Selection for Multivariable Nonlinear Systems. Ind. Eng.
Chem. Res. 2012, 51, 8583–8587. [CrossRef]

18. Shaker, H.R.; Stoustrup, J. An interaction measure for control configuration selection for multivariable
bilinear systems. Nonlinear Dyn. 2013, 72, 165–174. [CrossRef]

19. Singh, A.K.; Hahn, J. Determining Optimal Sensor Locations for State and Parameter Estimation for Stable
Nonlinear Systems. Ind. Eng. Chem. Res. 2005, 44, 5645–5659. [CrossRef]

20. Saltik, M.B.; Özkan, L.; Weiland, S.; van den Hof, P.M.J. Sensor Configuration Problem: Application to a
Membrane Separation Unit. IFAC-PapersOnLine 2016, 49, 189–194. [CrossRef]

21. Summers, T.H.; Cortesi, F.L.; Lygeros, J. On Submodularity and Controllability in Complex Dynamical
Networks. IEEE Trans. Control Netw. Syst. 2016, 3, 91–101. [CrossRef]

22. Lawrence, D.; Myatt, J.H.; Camphouse, R.C. On Model Reduction via Empirical Balanced Truncation.
In Proceedings of the American Control Conference, Portland, OR, USA, 8–10 June 2005; Volume 5,
pp. 3139–3144.

23. Hahn, J.; Kruger, U.; Edgar, T.F. Application of Model Reduction for Model Predictive Control. IFAC Proc.
Vol. 2002, 15, 393–398. [CrossRef]

24. Hahn, J.; Edgar, T.F. A Gramian Based Approach to Nonlinearity Quantification and Model Classification.
Ind. Eng. Chem. Res. 2001, 40, 5724–5731. [CrossRef]

25. Jiang, M.; Wu, J.; Jiang, L.; Li, X. A Gramians Based Method for Nonlinearity Quantification of
Spatio-Temporal Systems. In Advanced Science and Technology Letters; SERSC: Haikou, China, 2016;
Volume 121, pp. 38–42.

26. Fernando, K.V.; Nicholson, H. On the Cauchy Index of Linear Systems. IEEE Trans. Autom. Control 1983,
28, 222–224. [CrossRef]

27. Fortuna, L.; Fransca, M. Optimal and Robust Control: Advanced Topics with MATLAB; CRC Press: Boca Raton,
FL, USA, 2012.

28. Fu, J.; Zhong, C.; Ding, Y.; Zhou, J.; Zhong, C. An Information Theoretic Approach to Model Reduction
based on Frequency-domain Cross-Gramian Information. In Proceedings of the 8th World Congress on
Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 3679–3683.

29. Halvarsson, B.; Castaño, M.; Birk, W. Uncertainty Bounds for Gramian-Based Interaction Measures.
In Proceedings of the 14th WSEAS international conference on Systems: part of the 14th WSEAS CSCC
multiconference, Corfu Island, Greece, 22–24 July 2010; Volume 2, pp. 393–398.

30. Hrishikeshavan, V.; Humbert, J.S.; Chopra, I. Gramian Analysis of a Shrouded Rotor Micro Air Vehicle in
Hover. J. Guid. Control Dyn. 2014, 37, 1684–1690. [CrossRef]

http://dx.doi.org/10.1108/03321640410510730
http://dx.doi.org/10.1155/2014/843869
http://dx.doi.org/10.1016/j.ifacol.2017.08.2576
http://dx.doi.org/10.1021/ie301137k
http://dx.doi.org/10.1007/s11071-012-0700-z
http://dx.doi.org/10.1021/ie040212v
http://dx.doi.org/10.1016/j.ifacol.2016.07.245
http://dx.doi.org/10.1109/TCNS.2015.2453711
http://dx.doi.org/10.3182/20020721-6-ES-1901.00634
http://dx.doi.org/10.1021/ie010155v
http://dx.doi.org/10.1109/TAC.1983.1103200
http://dx.doi.org/10.2514/1.G000066

Algorithms 2018, 11, 91 25 of 27

31. Gugercin, S.; Antoulas, A.C.; Beattie, C. H2 Model Reduction for Large-Scale Linear Dynamical Systems.
SIAM J. Matrix Anal. Appl. 2008, 30, 609–638. [CrossRef]

32. Willcox, K.; Peraire, J. Balanced Model Reduction via the Proper Orthogonal Decomposition. AIAA J. 2002,
40, 2323–2330. [CrossRef]

33. Rowley, C.W. Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat.
Chaos 2005, 15, 997–1013. [CrossRef]

34. Sun, C.; Hahn, J. Nonlinear Model Reduction Routines for MATLAB; Technical Report; Rensselaer Polytechnic
Institute: Troy, NY, USA, 2006.

35. Hahn, J.; Edgar, T.F. Balancing Approach to Minimal Realization and Model Reduction of Stable Nonlinear
Systems. Ind. Eng. Chem. Res. 2002, 41, 2204–2212. [CrossRef]

36. Choroszucha, R.B.; Sun, J.; Butts, K. Nonlinear Model Order Reduction for Predictive Control of the Diesel
Engine Airpath. In Proceedings of the American Control Conference, Boston, MA, USA, 6–8 July 2016; pp.
5081–5086.

37. Krener, A.; Ide, K. Measures of Unobservability. In Proceedings of the 48th IEEE Conference on Decision and
Control, 2009 held jointly with the 2009 28th Chinese Control Conference, Shanghai, China, 16–18 December
2009; pp. 6401–6406.

38. Himpe, C.; Ohlberger, M. A Unified Software Framework for Empirical Gramians. J. Math. 2013, 2013, 1–6.
[CrossRef]

39. Himpe, C.; Ohlberger, M. A note on the cross Gramian for non-symmetric systems. Syst. Sci. Control Eng.
2016, 4, 199–208. [CrossRef]

40. Garcia, J.S.; Basilio, J.C. Computation of reduced-order models of multivariable systems by balanced
truncation. Int. J. Syst. Sci. 2002, 33, 847–854. [CrossRef]

41. Antoulas, A.C. Approximation of Large-Scale Dynamical Systems Volume 6 Advances in Design and Control;
SIAM Publications: Philadelphia, PA, USA, 2005.

42. Aldhaheri, R.W. Model order reduction via real Schur-form decomposition. Int. J. Control 1991, 53, 709–716.
[CrossRef]

43. Baur, U.; Benner, P. Gramian-Based Model Reduction for Data-Sparse Systems. SIAM J. Sci. Comput. 2008,
31, 776–798. [CrossRef]

44. Sorensen, D.C.; Antoulas, A.C. The Sylvester equation and approximate balanced reduction. Numer. Linear
Algebra Appl. 2002, 671–700. [CrossRef]

45. Hahn, J.; Edgar, T.F. An improved method for nonlinear model reduction using balancing of empirical
Gramians. Comput. Chem. Eng. 2002, 26, 1379–1397. [CrossRef]

46. Sun, C.; Hahn, J. Parameter reduction for stable dynamical systems based on Hankel singular values and
sensitivity analysis. Chem. Eng. Sci. 2006, 61, 5393–5403. [CrossRef]

47. Himpe, C. Combined State and Parameter Reduction for Nonlinear Systems with an Application in
Neuroscience. Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, Münster, Germany, 2017.

48. Keil, A.; Gouzé, J.L. Model Reduction of Modular Systems Using Balancing Methods; Technical Report; Technische
Universität München: München, Germany, 2003.

49. Stigter, J.D.; van Willigenburg, L.G.; Molenaar, J. An Efficient Method to Assess Local Controllability and
Observability for Non-Linear Systems. IFAC-PapersOnLine 2018, 51, 535–540. [CrossRef]

50. Hespanha, J. Linear Systems Theory; Princeton University Press: Princeton, NJ, USA, 2009.
51. Ma, X.; De Abreu-Garcia, J.A. On the Computation of Reduced Order Models of Nonlinear Systems using

Balancing Technique. In Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA,
7–9 December 1988; Volume 2, pp. 1165–1166.

52. Singh, A.K.; Hahn, J. On the Use of Empirical Gramians for Controllability and Observability Analysis.
In Proceedings of the 2005 American Control Conference, Portland, OR, USA, 8–10 June 2005; Volume 2005,
pp. 140–141.

53. Dones, I.; Skogestad, S.; Preisig, H.A. Application of Balanced Truncation to Nonlinear Systems. Ind. Eng.
Chem. Res. 2011, 50, 10093–10101. [CrossRef]

54. Scherpen, J.M.A. Balancing for nonlinear systems. Syst. Control Lett. 1993, 21, 143–153. [CrossRef]
55. Hahn, J.; Edgar, T.F.; Marquardt, W. Controllability and observability covariance matrices for the analysis

and order reduction of stable nonlinear systems. J. Process Control 2003, 13, 115–127. [CrossRef]

http://dx.doi.org/10.1137/060666123
http://dx.doi.org/10.2514/2.1570
http://dx.doi.org/10.1142/S0218127405012429
http://dx.doi.org/10.1021/ie0106175
http://dx.doi.org/10.1155/2013/365909
http://dx.doi.org/10.1080/21642583.2016.1215273
http://dx.doi.org/10.1080/0020772021000017308
http://dx.doi.org/10.1080/00207179108953642
http://dx.doi.org/10.1137/070711578
http://dx.doi.org/10.1016/S0024-3795(02)00283-5
http://dx.doi.org/10.1016/S0098-1354(02)00120-5
http://dx.doi.org/10.1016/j.ces.2006.04.027
http://dx.doi.org/10.1016/j.ifacol.2018.03.090
http://dx.doi.org/10.1021/ie200706d
http://dx.doi.org/10.1016/0167-6911(93)90117-O
http://dx.doi.org/10.1016/S0959-1524(02)00024-0

Algorithms 2018, 11, 91 26 of 27

56. Fernando, K.V.; Nicholson, H. On the Structure of Balanced and Other Principal Representations of SISO
Systems. IEEE Trans. Autom. Control 1983, 28, 228–231. [CrossRef]

57. Fernando, K.V. Covariance and Gramian Matrices in Control and Systems Theory. Ph.D. Thesis, University of
Sheffield, Sheffield, UK, 1982.

58. Fernando, K.V.; Nicholson, H. On the Cross-Gramian for Symmetric MIMO Systems. IEEE Trans. Circuits
Syst. 1985, 32, 487–489. [CrossRef]

59. Shaker, H.R. Generalized Cross-Gramian for Linear Systems. In Proceedings of the 7th IEEE Conference on
Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 749–751.

60. Baur, U.; Benner, P.; Haasdonk, B.; Himpe, C.; Martini, I.; Ohlberger, M. Comparison of Methods for
Parametric Model Order Reduction of Time-Dependent Problems. In Model Reduction and Approximation:
Theory and Algorithms; Benner, P., Cohen, A., Ohlberger, M., Willcox, K., Eds.; SIAM: Philadelphia, PA, USA,
2017; pp. 377–407.

61. Barbagallo, A.; De Felice, V.F.; Nagarajan, K.K. Reduced Order Modelling of a Couette Flow Using Balanced
Proper Orthogonal Decomposition. In Proceedings of the 2nd Young ERCOFTAC Workshop, Montestigliano,
Italy, 10 March 2008.

62. Ionescu, T.C.; Fujimoto, K.; Scherpen, J.M.A. Singular Value Analysis of Nonlinear Symmetric Systems.
IEEE Trans. Autom. Control 2011, 56, 2073–2086. [CrossRef]

63. Fujimoto, K.; Scherpen, J.M.A. On balanced truncation for symmetric nonlinear systems. In Proceedings
of the International Symposium on Mathematical Theory of Networks and Systems, Groningen, The
Netherlands, 7–11 July 2014; Volume 21, pp. 1498–1502.

64. Constantine, P. Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies; SIAM Spotlights,
SIAM: Philadelphia, PA, USA, 2015.

65. Lieberman, C.E.; Fidkowski, K.; Willcox, K.; van Bloemen Waanders, B. Hessian-based model reduction:
Large-scale inversion and prediction. Int. J. Numer. Methods Fluids 2013, 71, 135–150. [CrossRef]

66. Jazlan, A.; Sreeram, V.; Togneri, R. Cross Gramian Based Time Interval Model Reduction. In Proceedings of
the 5th Australien Control Conference (AUCC), Gold Coast, Australia, 5–6 November 2015; pp. 274–276.

67. The MathWorks, Inc. MATLAB. Available online: http://www.matlab.com (accessed on 26 June 2018).
68. The Octave Developers. GNU Octave. Available online: http://octave.org (accessed on 26 June 2018).
69. Johnson, R.K. The Elements of MATLAB Style; Cambridge University Press: Cambridge, UK, 2011.
70. Altman, Y.M. Accelerating MATLAB Performance: 1001 Tips to Speed up MATLAB Programs; CRC Press:

Boca Raton, FL, USA, 2015.
71. Rogers, P.; Marci, J.; Marinkovic, S. Heterogeneous Uniform Memory Access; AMD: Santa Clara, CA, USA, 2013.
72. Himpe, C.; Leibner, T.; Rave, S. Hierarchical Approximate Proper Orthogonal Decomposition. arXiv 2018,

arXiv:1607.05210.
73. Himpe, C.; Leibner, T.; Rave, S.; Saak, J. Fast Low-Rank Empirical Cross Gramians. Proc. Appl. Math. Mech.

2017, 17, 841–842. [CrossRef]
74. Condon, M.; Ivanov, R. Empirical Balanced Truncation of Nonlinear Systems. J. Nonlinear Sci. 2004,

14, 405–414. [CrossRef]
75. Nilsson, O.; Rantzer, A. A novel approach to balanced truncation of nonlinear systems. In Proceedings of

the 2009 European Control Conference (ECC), Budapest, Hungary, 23–26 August 2009.
76. Nikiforuk, P.N.; Gupta, M.M. On stochastic perturbation theory for linear systems. In Proceedings of

the 1969 IEEE Symposium on Adaptive Processes (8th) Decision and Control, University Park, PA, USA,
17–19 November 1969.

77. Bouvrie, J.; Hamzi, B. Kernel Methods for the Approximation of Nonlinear Systems. SIAM J. Control Optim.
2017, 55, 2460–2492. [CrossRef]

78. Fasshauer, G.; McCourt, M. Kernel-Based Approximation Methods Using MATLAB Volume 19 Interdisciplinary
Mathematical Sciences; World Scientific: Singapore, 2015.

79. Kalashnikova, I.; Barone, M.; Arunajatesan, S.; van Bloemen Waanders, B. Construction of energy-stable
projection-based reduced order models. Appl. Math. Comput. 2014, 249, 569–596. [CrossRef]

80. Schelfhout, G.; de Moor, B. Time-Domain Weighted Balanced Truncation. In Proceedings of the 3rd European
Control Conference, Rome, Italy, 5–8 September 1995; pp. 1–4.

81. Snowden, T.J.; van der Graaf, P.H.; Tindall, M.J. A combined model reduction algorithm for controlled
biochemical systems. BMC Syst. Biol. 2017, 11, 1–18. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TAC.1983.1103195
http://dx.doi.org/10.1109/TCS.1985.1085737
http://dx.doi.org/10.1109/TAC.2011.2126630
http://dx.doi.org/10.1002/fld.3650
http://www.matlab.com
http://octave.org
http://dx.doi.org/10.1002/pamm.201710388
http://dx.doi.org/10.1007/s00332-004-0617-5
http://dx.doi.org/10.1137/14096815X
http://dx.doi.org/10.1016/j.amc.2014.10.073
http://dx.doi.org/10.1186/s12918-017-0397-1
http://www.ncbi.nlm.nih.gov/pubmed/28193218

Algorithms 2018, 11, 91 27 of 27

82. Eberle, C.; Ament, C. Identifiability and online estimation of diagnostic parameters with in the glucose
insulin homeostasis. Biosystems 2012, 107, 135–141. [CrossRef] [PubMed]

83. Powel, N.D.; Morgansen, K.A. Empirical Observability Gramian Rank Condition for Weak Observability of
Nonlinear Systems with Control. In Proceedings of the 54th Annual Conference on Decision and Control,
Osaka, Japan, 15–18 December 2015; pp. 6342–6348.

84. Wu, M.; Yin, B.; Vosoughi, A.; Studer, C.; Cavallaro, J.R.; Dick, C. Approximate Matrix Inversion for
High-Throughput Data Detection in the Large-Scale MIMO Uplink. In Proceedings of the 2013
IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing, China, 19–23 May 2013;
pp. 2155–2158.

85. Ketcheson, D.I. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage
Implementations. SIAM J. Sci. Comput. 2008, 30, 2113–2136. [CrossRef]

86. Eaton, J.W.; Bateman, D.; Hauberg, S.; Wehbring, R. GNU Octave Version 4.4.0 Manual: A High-Level
Interactive Language for Numerical Computations. Available online: https://octave.org/octave.pdf
(accessed on 26 June 2018).

87. The MORwiki Community. MORwiki-Model Order Reduction Wiki. Available online: http://
modelreduction.org (accessed on 26 June 2018).

88. Himpe, C.; Ohlberger, M. Cross-Gramian-Based Model Reduction: A Comparison. In Model Reduction of
Parametrized Systems; Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K., Eds.; Springer: Cham,
Switzerland, 2017; Volume 17, pp. 271–283.

89. Liu, W.Q.; Sreeram, V.; Teo, K.L. Model reduction for state-space symmetric systems. Syst. Control Lett. 1998,
34, 209–215. [CrossRef]

90. Quan, Y.; Zhang, H.; Cai, L. Modeling and Control Based on a New Neural Network Model. In Proceedings of
the American Control Conference, Arlington, VA, USA, 25–27 June 2001; Volume 3, pp. 1928–1929.

91. Everson, R.; Sirovich, L. Karhunen-Loéve Procedure for Gappy Data. J. Opt. Soc. Am. A 1995, 12, 1657–1664.
[CrossRef]

92. Astrid, P. Fast Reduced Order Modeling Technique for Large Scale LTV Systems. In Proceedings of the
American Control Conference, Boston, MA, USA, 30 June–2 July 2004; pp. 762–767.

93. Chaturantabut, S.; Sorensen, D.C. Nonlinear model reduction via discrete empirical interpolation. SIAM J.
Sci. Comput. 2010, 32, 2737–2764. [CrossRef]

94. Williams, M.O.; Schmid, P.J.; Kutz, J.N. Hybrid Reduced-Order Integration with Proper Orthogonal
Decomposition and Dynamic Mode Decomposition. Multiscale Model. Simul. 2013, 11, 522–544. [CrossRef]

95. Moore, B.C. Principal Component Analysis in Nonlinear Systems: Preliminary Results. In Proceedings of
the 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes,
Fort Lauderdale, FL, USA, 12–14 December 1979; Volume 2, pp. 1057–1060.

96. Dimitriu, G.; Ştefănescu, R.; Navon, I.M. Comparative numerical analysis using reduced-order modeling
strategies for nonlinear large-scale systems. J. Comput. Appl. Math. 2017, 310, 32–42. [CrossRef]

97. Melchior, S.; Legat, V.; van Dooren, P. Gramian Based Model Reduction of Nonlinear MIMO Systems.
In Proceedings of the Mathematical Theory of Networks and Systems, Melbourne, Australia, 9–13 July 2012.

98. Yeung, E.; Liu, Z.; Hodas, N.O. A Koopman Operator Approach for Computing and Balancing Gramians for
Discrete Time Nonlinear Systems. arXiv 2017, arXiv:1709.08712.

99. Choroszucha, R.B.; Sun, J. Empirical Riccati covariance matrices for closed-loop model order reduction of
nonlinear systems by balanced truncation. In Proceedings of the American Control Conference, Seattle, WA,
USA, 24–26 May 2017; pp. 3476–3482.

100. Kawano, Y.; Scherpen, J.M.A. Empirical Differential Balancing for Nonlinear Systems. IFAC-PapersOnLine
2017, 50, 6326–6331. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.biosystems.2011.11.003
http://www.ncbi.nlm.nih.gov/pubmed/22100871
http://dx.doi.org/10.1137/07070485X
https://octave.org/octave.pdf
http://modelreduction.org
http://modelreduction.org
http://dx.doi.org/10.1016/S0167-6911(98)00024-3
http://dx.doi.org/10.1364/JOSAA.12.001657
http://dx.doi.org/10.1137/090766498
http://dx.doi.org/10.1137/120874539
http://dx.doi.org/10.1016/j.cam.2016.07.002
http://dx.doi.org/10.1016/j.ifacol.2017.08.920
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Aim
	Outline

	Mathematical Preliminaries
	Empirical Gramians
	State-Space Empirical Gramians
	Empirical Controllability Gramian
	Empirical Observability Gramian
	Empirical Linear Cross Gramian
	Empirical Cross Gramian
	Empirical Non-Symmetric Cross Gramians

	Parameter-Space Empirical Gramians
	Empirical Sensitivity Gramian
	Empirical Identifiability Gramian
	Empirical Cross-Identifiability Gramian

	Notes on Empirical Gramians

	Implementation Details
	Design Principles
	Parallelization
	Shared Memory Parallelization
	Heterogeneous Parallelization
	Distributed Memory Parallelization

	Interface
	Mandatory Arguments
	Features
	Non-Symmetric Cross Gramian
	Parametric Systems
	Time-Varying Systems

	Optional Arguments
	Option Flags
	Schur-Complement
	Partitioned Computation

	Solver Configuration
	Sample Usage

	Numerical Examples
	Linear Verification
	Hyperbolic Evaluation
	Nonlinear Validation
	On Hyper-Reduction

	Concluding Remark
	References

