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Abstract— Empirical gramians are a tool for nonlinear model
reduction. Together with other snapshot-based methods, empir-
ical gramians face several computational issues; among them is
the calculation of the snapshots or the feature extraction from
the associated gramian matrices. We present an assortment of
techniques to accelerate the computation and usage of empirical
gramians and demonstrate their advantages.

I. INTRODUCTION

For linear state-space systems,

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), x(0) = x0,

many model reduction algorithms are established, for example
balanced truncation and approximate balancing which parti-
tion the state-space based on the input-output energy transfer.
For general nonlinear parametrized systems,

ẋ(t) = f(x(t), u(t), θ), y(t) = g(x(t), u(t), θ), x(0) = x0,

fewer (computable) model reduction algorithms are available,
among them empirical gramian-based model reduction.

II. EMPIRICAL GRAMIANS

Empirical gramians extend the concept of balanced trunca-
tion to nonlinear systems [1]. Related snapshot-based methods
are also found in fluid dynamics, see for example [2].

All balancing related methods are based upon the control-
lability operator C and observability operator O,

C(u) :=
∫ 0

−∞
e−AtBu(t)dt, O(x0) := CeAtx0,

of which the former maps (past) inputs to states and the latter
maps states to (future) outputs.

The system gramians: controllability gramian WC , observ-
ability gramian WO and cross gramian WX , are defined as
follows:

WC := CC∗, WO := O∗O, WX := CO.

Now, the empirical gramians are computed by approximating
the operators C and O by discrete time-series snapshots. This
approach is also valid for nonlinear systems (around a steady
state), since the computation requires only (output) trajectory
snapshots.

III. IMPROVED RUNGE-KUTTA METHODS

Empirical gramians are computed from trajectories. To
obtain trajectories for nonlinear systems a common class of
solvers are Runge-Kutta or one-step methods. Explicit Runge-
Kutta integrators of order s,

yn+1 = yn + h

s∑
i=1

biki, ki = f(tn + cih, yn + h(

i∑
j=1

aijkj)).

require a repeated evaluation of the system’s vector field f ,
which in the nonlinear case, consumes the dominant fraction
of computational time. Thus, reducing the number of vector
field evaluations expedites the computation of the trajectories.
A second class of solvers are multi-step solvers, which reuse
evaluations of f from previous steps; for example the explicit
Adams-Bashforth methods of order s:

yn+1 = yn + h

s∑
i=0

bif(tn−j , yn−j).

Combining explicit one-step Runge-Kutta methods with ex-
plicit multi-step solvers allows higher order solutions with
less vector field evaluations.

The accelerated Runge-Kutta methods [3], are two-step
Runge-Kutta methods that include information from the pre-
vious time step. The improved Runge-Kutta methods [4] are
a further development of these two-step methods:

yn+1 = yn + h(b1k1 − b−1k1 +
s∑

i=2

bi(ki − k−i)).

Like all multi-step methods these two-step Runge-Kutta meth-
ods require a starting value, which can be computed by the
(minimal local error) Ralston methods [5].

IV. GENERALIZED TRANSPOSITION

The empirical gramians are computed as inner products of
the centered trajectory snapshots components. In case of the
empirical cross gramian by:

WX =

dim(u(t))∑
k=1

∫ ∞
0

W̃X d t, W̃Xi,j = 〈xki (t), y
j
l (t)〉.

Arranging the j = 1, . . . ,dim(x(t)) (discrete) output trajec-
tory snapshots yjl (t) in a 3rd order tensor Y ltj = yjl (t), allows
a vectorized component-wise dot-product with the discrete
state trajectories xkit by using generalized transpositions:

W̃X = xkY <[231]>(l, :, :).



V. APPROXIMATE INVERSE

Gramian-based methods for parameter identification and
reduction are available, too; in example the cross-gramian-
based approach described in [6]. For a parametrized (square)
system augmented with associated “parameter states”:(

ẋ

θ̇

)
=

(
f(x(t), u(t), θ)

0

)
,

(
x(0)
θ(0)

)
=

(
x0
θ

)
,

y = g(x(t), u(t), θ),

the empirical cross gramian of this system is called (empiri-
cal) joint gramian,

WJ :=

(
WX WM

0 0

)
.

The lower blocks are zero, and thus do not require memory,
due to the uncontrollability of the parameter states. The
cross-identifiability gramian is then defined as the Schur
complement of the symmetric part of the joint gramian:

WÏ := −1

2
WT

M (WX +WT
X)−1WM ,

which contains the parameter identifiability (observability).
The extraction of the cross-identifiability gramian WÏ from

the joint gramian WJ utilizes the computation of a Schur-
complement, which in turn requires a matrix inversion of the
symmetric part of the cross gramian WX . A conventional
dense matrix inversion is not feasible for large state spaces.
The well known identity of the inverse of a matrix as the
limit of the Neumann series A−1 =

∑∞
k=0(1− A)k justifies

the computation of an approximate inverse by a truncated
Neumann series. A variant of this approach, from [7], where
an additive decomposition into diagonal components D and
off-diagonal components E by A = D+E is exploited, yields
an approximate, yet computationally cheap, inverse:

A−1 ≈
K�∞∑
k=0

(−D−1E)kD−1,

which for (K = 2) requires only O(N2) flops.

VI. DOUBLE RE-ORTHOGONALIZED LANCZOS

Either, balanced truncation and approximate balancing as
well as gramian-based parameter identification require a sin-
gular value decomposition (SVD) to assemble the (approxi-
mate) balancing projection. A truncated SVD (thin SVD) can
be computed using a variant of the Lanczos algorithm. The
Lanczos algorithm is an iterative partial tri-diagonalization
for symmetric eigenvalue problems that requires only vector
operations and matrix-vector products. In each iteration a re-
orthogonalization is included to ensure orthogonality [8].

To further enhance the quality for large-scale matrix
decompositions, an additional orthogonalization as post-
processing step can be added for the left (and right) singular
vectors.

Time [s]
WÏ (Default) 8303.0
Wİ (General. Transp.) 7600.7
WÏ (Improved RK) 5540.5
WÏ (Accelerated) 4871.1
Matlab TSVD of WÏ 13.000
Lanczos TSVD of WÏ 1.000

TABLE I
COMPARISON OF COMPUTATIONAL TIME FOR THE EMPIRICAL

CROSS-IDENTIFIABILITY GRAMIAN WÏ ∈ R
1024×1024 .

VII. NUMERICAL COMPARISON

To assess the presented techniques, the computational times
for an (SVD of an) empirical cross-identifiability gramian
are compared within Matlab using the empirical gramian
framework (emgr) [9] for a SISO hyperbolic network model,

ẋ(t) = A tanh(K(θ)x(t)) +Bu(t),

y(t) = Cx(t),

of order dim(x(t)) = 1024 and a parametrized diagonal
matrix K = diag(θ) ⇒ dim(θ) = dim(x(t)). For details
of the benchmark see the source code http://j.mp/
iwmrrf15. Benchmarked are the default computation (Ral-
ston RK3 solver, component-wise assembly, inverse) against
the improved RK3 method and generalized transpositions
individually and in combination including the approximate
inverse, additionally the Matlab truncated SVD is tested
against the Lanczos truncated SVD.

The results in Table I show the timings for the tested
improvements which achieve an overall speed-up of 1.7×. For
large-scale systems with dim(x(t)) > 105 these performance
gains can reduce the computational complexity of snapshot-
based (parametric) nonlinear model order reduction.
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