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Abstract
Version 5.99 of the empirical Gramian framework – emgr – completes a

development cycle which focused on parametric model order reduction of
gas network models while preserving compatibility to the previous devel-
opment for the application of combined state and parameter reduction for
neuroscience network models. Secondarily, new features concerning empir-
ical Gramian types, perturbation design, and trajectory post-processing,
as well as a Python version in addition to the default MATLAB / Octave
implementation, have been added. This work summarizes these changes,
particularly since emgr version 5.4, see Himpe, 2018 [Algorithms 11(7): 91],
and gives recent as well as future applications, such as parameter identi-
fication in systems biology, based on the current feature set.

Keywords: Control Theory, System Theory, Nonlinear Systems, System
Gramians, Empirical Gramians

1 Project History and Overview
The empirical Gramian framework (emgr) is an open-source MATLAB (and
Octave-compatible) software package for the computation of empirical system
Gramians and empirical covariance matrices, which are (approximations to the)
essential operators in (nonlinear) system theory.

Originally, emgr was started to provide reusable computational kernels with
a unified interface, while the interface is inspired by the gram function of the
Control System Toolbox [MathWorks, nd] and the “Nonlinear Model Reduction
Routines” [Sun and Hahn, nd].

The first release (version 0.9) coincided with the “MoRePaS 2” workshop1

in 2012, while a first summary of the capabilities is published in [Himpe and
Ohlberger, 2013] (based on version 1.3), and detailed descriptions of emgr are
given in [Himpe, 2017] (based on version 3.9) and [Himpe, 2018] (based on
version 5.4). Marking the ten-year anniversary of emgr’s development, ver-
sion 5.99 [Himpe, 2022] was released. And relative to version 5.4, various major
features have been added, which this work summarizes.
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1see: https://web.archive.org/web/20121219154629/http://www.morepas.org:
80/workshop2012/index.html
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The (empirical) system Gramian matrices have a multitude of system theo-
retic applications, which include model reduction, parameter identification, con-
trol configuration selection, sensitivity analysis, optimal placement, nonlinearity
quantification, or system characterization via indices and invariants. Beyond
system and control theory, areas such as uncertainty quantification use numeri-
cally approximations of operators which are computable as empirical Gramians,
for example Hessians [Lieberman et al., 2013]. Recent interesting uses for system
Gramians in particular applications are: pose detection [Avant and Morganson,
2019], traffic networks [Bianchin and Pasqualetti, 2020], tau functions [Blower
and Newsham, 2021], and vulnerability analysis [Babazadeh, 2022].

2 New Features
A detailed description of the features up to and including emgr 5.4 is given
in [Himpe, 2018]. This section summarizes the major new features imple-
mented since version 5.4 onwards until the latest version 5.99. These features
are grouped in to five categories: Gramian variants, input functions, trajectory
weighting, parameter identifiability, and Python version.

2.1 Gramian Variants
emgr provides seven empirical Gramians: controllability, observability, cross, lin-
ear cross, sensitivity, identifiability and joint Gramian. Of those, only the cross-
Gramian derived empirical Gramians (cross, linear cross and joint Gramian)
used to provide a variant, specifically for non-square or non-symmetric sys-
tems [Himpe, 2018, Sec. 3.1.5]. Over the recent releases, variants also for the
controllability- and observability-based Gramians were added.

It is noted here, that the loadability Gramian from [Tolks and Ament, 2017]
is not a system Gramian but a standard Gram matrix [Wikipedia contributors,
2022], and hence does not need to be computed via emgr.

2.1.1 Output Controllability Gramian

The output reachability Gramian, or more generally the output controllability
Gramian [Kreindler and Sarachik, 1964], encodes the controllability of the out-
put y : R → RQ instead of the controllability of the state x : R → RN . It has
various applications in system theory, for example in control configuration selec-
tion [Halvarsson, 2008], while more recently the empirical output-controllability
covariance matrix (EOCCM) [Méndez-Blanco and Özkan, 2021] is employed
for parameter identifiability. An empirical output controllability Gramian can
always be computed via the empirical controllability Gramian, given a linear
output operator C of the underlying system,

ŴOC = CŴCC
ᵀ.

However in version 5.8, direct computation of the output controllability Gramian
was included; not only to provide a more memory efficient computation for large-
scale systems by computing an empirical output controllability Gramian from
output trajectory data directly, instead of state trajectories, but also to approx-
imate the output controllability for systems with nonlinear output operators.
Following the format of [Himpe, 2018], it is defined as:
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Definition 1 (Empirical Output Controllability Gramian)
Given non-empty sets Eu and Su, the empirical output controllability Gramian
ŴOC ∈ RQ×Q is defined as:

ŴOC := 1
|Su|

|Su|∑
k=1

M∑
m=1

1
c2k

∫ T

0
Ψkm(t) dt

Ψkm(t) = (ykm(t)− ȳkm)(ykm(t)− ȳkm)ᵀ ∈ RQ×Q,

with the output trajectories ykm(t) ∈ RQ for the input configurations
ûkm(t) = cke

m ◦ u(t) + ū, ck ∈ Su, em ∈ Eu, and offsets ū ∈ RM , x̄km ∈ RN .

2.1.2 Average Observability Gramian

An idea similar to the non-symmetric (empirical) cross Gramian [Himpe, 2018,
Sec. 3.1.5], is an average observability Gramian, which is hinted at in [Rong and
Michael, 2016]. Practically, this means for multiple output systems, that all
outputs are summed up yielding a single (average) output. This variant, added
in version 5.7, also extends to the augmented empirical observability Gramian,
and thus the empirical identifiability Gramian.

The empirical local observability Gramian [Krener and Ide, 2009], could have
been a potential variant, yet, [Rong and Michael, 2016, Sec. II.A] illustrates why
the standard empirical observability Gramian suffices.

2.2 Input Functions
Already up to version 5.4, emgr provided means to pass a custom function of
a single (time) argument as input function for the empirical Gramian compu-
tation or select from the included default input functions: impulse, decaying
chirp, or pseudo-random binary sequence. Subsequently, two more default in-
put functions were implemented:

2.2.1 Step Function Input

Since for (semi-discrete) hyperbolic partial differential equation models, with in-
puts and outputs at the boundaries, step functions are a relevant training input,
which was demonstrated heuristically in [Grundel et al., 2019], in version 5.7 a
constant “step” function was added as default input function:

ustep(t) := 1.

This training input became the default for data-driven reduced order gas net-
work models in the morgen platform [Himpe et al., 2021], which utilizes emgr
as model reduction back-end.

2.2.2 Sine Cardinale Input

A smooth alternative to impulse input is a sine cardinale (sinc) input, as it was
employed in [Arjona et al., 2011]. In version 5.8, a scaled sinc input function
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has been included into the set of default inputs:

usinc(t) :=
{

sin(th−1)
th−1 t 6= 0,

1 t = 0,

for time-step width h > 0.

2.3 Trajectory Weighting
As mentioned in [Himpe, 2018, Sec. 5.3] trajectory weighting, could be imple-
mented by using the custom inner product interface. However, a set of weighting
functions has been included, originally motivated by time domain weighting.
Nonetheless, trajectory independent weightings like in [Mitra, 1969] are still
achieved via the inner product interface.

2.3.1 Time-Weighting

Time-domain weighting of Gramians was initially proposed in [Schelfhout and
De Moor, 1995], particularly, using monomials of the time variable, and also
provides an error bound [Sreeram, 2002] if used in conjunction with balanced
truncation [Breiten and Stykel, 2021]. In version 5.8, linear and a quadratic
time-domain weighting was included, based on a time-weighted linear system
Gramian and [Himpe, 2018, Sec. 3.1]:

W∗ = 1
r!

∫ ∞
0

tr eA1x(t)D eA2x(t) dt

→ Ŵ∗ = 1
. . .

∑
· · ·
∑ 1

. . .

1
r!

∫
tr Ψ(t) dt

for r ∈ {1, 2} and all computable empirical Gramians. Practically, such time-
weighting emphasizes “later” parts of a simulated trajectory in the empirical
Gramian, over the “earlier” parts, like the initial state / output. Note, that the
scaling factor 1

r! from [Sreeram, 2002] is included for convenience, in case for a
typical use in conjunction with balanced truncation.

2.3.2 Reciprocal Time-Weighting

Furthermore, in the latest version 5.99 a time-reciprocal weighting, also based
on a weighted linear system Gramian and [Himpe, 2018, Sec. 3.1]:

W∗ =
∫ ∞

0

1√
πt

eA1x(t)D eA2x(t) dt

→ Ŵ∗ = 1
. . .

∑
· · ·
∑ 1

. . .

∫ 1√
πt

Ψ(t) dt

following [Glover, 1987, Sec. 3.2] was included, i.e. to allow numerical verifica-
tion of the lower error bound presented in there, and to provide a time-weighting
emphasizing “earlier” parts of a simulated trajectory, in contrast to the typical
time-weighting. Note, that practically at time t = 0 the scaling factor is set
to
√

2
π∆t , which was determined heuristically to be suitable.
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2.3.3 Column-Based Weighting

The column-based weighting originates in an approach to suboptimal control
from [Hyun et al., 2017, Def. 2], and defines a weighted Gramian which normal-
izes the state x (or output y) at each time instance by its length, i.e.:

x̂(t) := x(t) · ‖x(t)‖−1
2 ,

ŷ(t) := y(t) · ‖y(t)‖−1
2 .

2.3.4 Row-Based Weighting

The row-based weighting is based on component-wise scale normalization. This
means each component i of the utilized state x or output y trajectories for the
Gramians is normalized by its (absolute) maximum value, i.e.:

ŷi(t) := xi(t) · ‖xi‖−1
∞ ,

ŷi(t) := yi(t) · ‖yi‖−1
∞ ,

which means all component (output) trajectories evolve in the interval [−1, 1].

2.4 Parameter Identifiability
More recently parameter identification of nonlinear systems with low-dimensional
state-space, but high-dimensional parameter-space became a use-case for
emgr, [Falkenhagen et al., 2022]. This motivated the following enhancements:

2.4.1 Schur Complement

Initially, parameter identification was the basis for the combined state and pa-
rameter reduction [Himpe, 2017] of nonlinear systems with high-dimensional
state and parameter spaces, but homogeneous parameters, hence the matrix-
inverse inside the Schur complement is only roughly approximated by a trun-
cated Neumann series.

To improve accuracy of the empirical (cross-)identifiability Gramian, a more
accurate Schur complement option was added in version 5.99, which computes
the inner inverse as Moore-Penrose pseudo-inverse:

WI,exact = WP −W ᵀ
MW

+
OWM ,

WÏ,exact = −1
2W

ᵀ
m(WX +W ᵀ

X)+Wm.

2.4.2 Parameter Centering

Originally parameter-related Gramians (empirical sensitivity, identifiability, joint
Gramian) required a minimum and maximum parameter to define the range
of perturbation. Recently in version 5.99, a mode was added, which requires
minimum, maximum and nominal parameter, which then sets up a range of
perturbation with respect to the nominal value instead of the minimum or (log-
arithmic) mean.

5



2.5 Python Version
Since version 5.6, a Python (version 3) variant of emgr is also maintained2, that
provides the same features, and closely resembles the MATLAB interface and
function signature. The elaborate testing, prototype and wrapper code, as for
the MATLAB variant, is not available yet. However, a combinatorial testing of
configurations is supported3.

3 Application Demonstration
A current application for emgr’s empirical Gramians is, after combined state and
parameter reduction for brain connectivity inference [Himpe, 2017], and para-
metric model order reduction for gas networks [Himpe et al., 2021], parameter
identification for systems biology models.

Such application is exemplarily demonstrated on a benchmark model – the
IL13-Induced JAK/STAT signaling model from [Raue et al., 2014], which is
also tested in [Villaverde et al., 2016] and [Stigter and Joubert, 2021]. This
model has dim(u(t)) = 1 input, dim(x(t)) = 10 states, dim(y(t)) = 8 outputs
and dim(θ) = 23 parameters, and the following nonlinear vector field as well as
linear output function (in simplified form):

ẋ(t) =



θ6x2(t)− θ5x1 − c1θ1x1(t)u1(t)
θ5x1(t)− θ6x2(t)

θ2x3(t)(x6(t)− c3) + c1θ1x1(t)u1(t)
−θ3x4(t)− θ2x3(t)(x6(t)− c3)

θ3x4(t)− θ4x5(t)
−c2 θ8(x6(t)− c3)− θ7x3(t)x6(t)

θ13x1(t)+1 −
θ7x4(t)x6(t)
θ13x1(t)+1

θ9x7(t)(x6(t)− c3)− c2x10(t)(x7(t)− c4)
−θ11(x7(t)− c4)
−c1θ12x9(t)u1(t)
θ14x8(t)
θ15+x8(t) − θ16x10(t)



,

y(t) =



x1(t) + x3(t) + x4(t)
θ18(x3(t) + x4(t) + x5(t) + c5 − x9)

θ19(x4(t) + x5(t))
θ20(c3 − x6(t))

θ21x8(t)
θ17θ22θ

−1
11 x8(t)

x10(t)
c4 − x7(t)


,

2see: py/emgr.py
3see: py/emgrtest.py
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Figure 1: Singular values of the empirical identifiability Gramian for the
JAK/STAT benchmark system’s parameters.

with constants c1 = 2.265, c2 = 91, c3 = 2.8, c4 = 165, and c5 = 0.34.
Additionally, the initial state has a parameter dependency:

x0 =
[
1.3 θ23 0 0 0 c3 c4 0 c5 0

]ᵀ
.

As initial-state-parameters are not supported by default in emgr, but can be
emulated by providing a solver wrapper[Himpe, 2018, Sec. 5.5] which sets the
parameter in the initial states and passes the updated initial state to the actual
solver.

To assess the parameter identifiability, the empirical identifiability Gramian
is computed via the augmented empirical observability Gramian, of which its sin-
gular value decompositionWI = UΣUᵀ is analyzed. This numerical experiment
is conducted in MATLAB 2022a on a AMD Ryzen 5 4500U with 16GiB RAM.

The singular values Σii are plotted in Fig. 1 and indicate that the singular
vectors, associated to the seven smallest singular values, {u17, . . . , u23} contain
linear combinations of the original parameters that are least identifiable. To
reconstruct the contributions of those, these singular vectors are summed af-
ter taking their element-wise absolute value, ū2 :=

∑23
k=17 |uk|, which yields

the overall contribution of original parameter fractions to the “unidentifiable”
singular vectors. The dominant contribution is given by the five structurally
unidentifiable parameters {θ11, θ15, θ17, θ21, θ22}, as well as by the practically
unidentifiable parameters {θ4, θ14, θ16, θ19}. The remaining practically uniden-
tifiable parameters {θ3, θ12} are not contributing. However, all structurally
unidentifiable parameters are located, and particularly, all identifiable parame-
ters do not contribute (the respective elements of ū2 have relative magnitudes
below 10−7) to the singular vectors of small singular values. Thus, the results of
the empirical-Gramian-based parameter identification agrees with other studies
on this system in terms structural identifiability. Furthermore, the matrix of
singular vectors associated to the dominant singular values, represents a lower-
dimensional reparametrization of the system.
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4 Summary
In a decade of research in empirical system Gramians and working on emgr, I
conclude that an empirical-Gramian-based approach typically gives an accept-
able approximate answer, no matter the system’s complexities, which makes
this data-driven mathematical technology a somewhat universal tool for linear
and nonlinear control and system-theory and engineering. Lastly, I note that
more information and documentation on emgr can be found on:

https://gramian.de

Code Availability

The source code of the numerical experiments is licensed under BSD-2-
Clause License, can be obtained from:

doi:10.5281/zenodo.7048585

and is authored by: C. Himpe.
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